卷积神经网络(CNN)与TensorFlow实现

CNN的简介

卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC。CNN在图像识别、文本分类等方面都有着广泛的应用。本文将结合TensorFlow代码介绍一个完整的卷积神经网络中需要用到的以下内容:

  • 输入层
*   reshape操作 
  • 卷积层
*   填充(padding)
*   卷积(tf.nn.conv2d)
*   激活函数(relu)
*   池化(pooling)
  • 全连接层
*   矩阵相乘(tf.matmul)
*   dropout
  • 输出层
*   softmax

在文章的最后给出了TensorFlow实现两层卷积神经网络的完整示例代码。

网络结构和处理流程

一个两层的卷积神经网络如下图所示:

上图可以进一步展开成如下图的形式:

一个两层卷积神经网络的处理流程可以用文字描述为
  • 输入
*   reshape操作(变为2) 
  • 卷积层1
*   填充(padding)
*   卷积(tf.nn.conv2d)
*   加上偏移b_c1
*   激活函数(relu)
*   池化(tf.nn.max_pool)
  • 卷积层2(同卷积层1)
  • 全连接层
*   reshape操作(变为1) 
*   乘以权重w_d(tf.matmul)
*   加上偏移b_d
*   激活函数(relu)
*   dropout
  • 输出层
*   乘以权重w_out(tf.matmul)
*   加上偏移b_out
*   激活函数(softmax)

下面以使用CNN对MNIST分类为例,分别对CNN中的每个处理操作加以介绍。
  MNIST数据集介绍

约定符号:
  • 输入图像: n × n n × n n×n
  • filter(过滤器): f × f f × f f×f
  • padding(填充): p p p
  • stride(步长): s s s
    本文中使用的 n = 28 , f = 5 , s = 1 , p = f − 1 2 = 2 n=28, f=5, s=1, p=\displaystyle\frac{f-1}{2}=2 n=28,f=5,s=1,p=2f1=2
1.reshape
x = tf.placeholder(tf.float32, [None, 784])
x_reshape = tf.reshape(x, [-1, 28, 28, 1])

由于使用的是CNN对图像进行分类,所以不能再(像MLP一样)使用784维的向量表示输入x,而是要将其还原成28×28的图片形式。[-1, 28, 28, 1]中的-1表示第一维大小是由x自动确定的(因为x表示一个batch,而一个batch可以有若干副图片)。最后一个1表示通道数为1(因为MNIST数据集是灰度图片)。

2.padding


  如果不先进行padding,直接使用5×5的过滤器对28×28的图像进行卷积操作,会得到24×24的图像(计算方法为n-f+1)。
  但是这样会有两个缺点:
  1. 图像会越来越小,无法保持原来的尺寸
  2. 如上图所示,图像边缘的区域只会被一个过滤器经过,而中间的区域会被多个过滤器经过,这意味着边缘信息的丢失

padding的两种模式

1.padding=‘VALID’
  此时p=0,即不进行填充。
2.padding=‘SAME’
  在图像的边缘填充"0",每条边填充的大小为:

$$p=\displaystyle\frac{f-1}{2}=2 $$
  这样可以使得卷积操作后输出的图像尺寸保持不变(如详细结构图所示)
3.conv(卷积)
w_c1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='w_c1')
b_c1 = tf.Variable(tf.constant(0.1, shape=[32]), name='b_c1')
conv1 = tf.nn.conv2d(x_reshape, w_c1, strides=[1, 1, 1, 1], padding='SAME', name='conv1')
"""
tf.nn.conv2d(
    input,
    filter,
    strides,
    padding
)
    Args:
        input:  输入的张量
        filter: 过滤器,为变量Tensor(参数需要训练),形状为[filter_高, filter_宽, 输入通道数, 输出通道数]
        strides: 过滤器移动的步长
        padding: 填充算法,有两种方式,分别为"SAME"和"VALID"

"""

卷积的过程如下图所示(图转自参考资料[2])
  
  卷积的过程为对输入的每个通道与过滤器对应位置相乘后累加,如上图绿色框左上角的第一个值:
   1 = ( 0 × 1 + 0 × 1 + 0 × − 1 + 0 × − 1 + 0 × 0 + 1 × 1 + 0 × − 1 + 0 × − 1 + 1 × 0 ) + ( ⋯   ) + ( ⋯   ) + 1 = 1 + − 1 + 0 + 1 1=(0 \times 1+0 \times 1+0 \times-1+0 \times-1+0 \times 0+1 \times 1+0 \times-1+0 \times-1+1 \times 0)+(\cdots)+(\cdots)+1=1+-1+0+1 1=(0×1+0×1+0×1+0×1+0×0+1×1+0×1+0×1+1×0)+()+()+1=1+1+0+1
  我们肯定不能只在图像中检测一种特征,而是要同时检测水平、垂直、45度边缘等等特征,此时就要使用多个过滤器了。在上面的代码中我们使用了32个过滤器,将单通道的28×28×1图像转成了28×28×32的特征。
  卷积的权值共享指的是使用的是同一个filter在图像上滑动,而不是每滑动一次换一个filter。

4.激活函数(relu)
conv1 = tf.nn.relu(conv1 + b_c1, name='relu1')  # 使用relu激活函数  

激活函数的作用是增加网络对非线性问题的拟合能力。使用relu函数的优点有以下三点:

  • 计算速度快
      和sigmod需要计算指数和倒数相比,relu函数只需要计算max(0,x),速度要快很多。
  • 减轻梯度消失的问题
      使用bp算法进行梯度计算时,每经过一层sigmod神经元,梯度都要乘以sigmod的导数,最后会导致梯度消失。relu的导数为1,不会导致梯度变小,所以使用relu作为激活函数可以训练更深的网络
  • 稀疏性
      使用sigmod函数时,所有的神经元都会被激活,而使用relu函数作为激活函数,一部分的神经元不被激活(输出为0),减少了参数的相互依存关系,缓解了过拟合问题的发生。
5.pooling(池化)
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
"""
tf.nn.max_pool(
    value,
    ksize,
    strides,
    padding,
    data_format='NHWC',
    name=None
)
    Args:
        input:输入的张量
        ksize:输入张量的每个维度的窗口大小.
        strides:输入张量的每个维度的滑动窗口的步幅.
        padding:一个字符串,可以是'VALID'或'SAME'.填充算法.
"""

池化操作对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面进行特征压缩,提取主要特征(池化不改变通道数量)。
  池化操作一般有两种,一种是avy_pool,一种是max_pool,前者是取窗口内的均值(用的较少),后者是取最大值,如下图所示。
  
  在上面的代码中,使用如图所示2×2窗口和移动步长为2的池化操作,将28×28×32的特征图变为了14×14×32的特征图。

6.全连接层

全连接层是一种全连接网络,与MLP(多层感知机)类似,将卷积层输出的3136个特征转成1024个特征,最后转成输出层的10个输出,如下面dropout的图(a)所示。由于每个神经元和相邻层的所有神经元都有连接,所以称之为全连接层。

7.dropout
keep_prob = tf.placeholder(tf.float32)
dense = tf.nn.dropout(dense, keep_prob)

为了减少过拟合,我们在输出层之前加入dropout。keep_prob是一个placeholder,表示神经元保持不变(不被去掉)的概率p。在训练的过程中keep_prob设为0.5,表示在每次训练时每个神经元将有50%的概率被去除(或者叫屏蔽),即输出为0,但这种去除不是永久性的,只是在当前训练步骤被去除,这样做的目的是减少神经元之间的相互依赖性。在测试时keep_prob设为1,表示保留所有的神经元。dropout的过程如下图所示:

  由于训练时只使用了一部分神经元,而测试时所有的神经元都参与计算,测试时的输出必然会比训练时大,因此测试时的输出需要乘以神经元不被去掉的概率p,称之为scale。TensorFlow会自动处理输出值的scale,所以在TensorFlow中使用dropout时不需要考虑scale的问题。
  总结:当前dropout大量应用于全连接网络,在卷积网络隐藏层中由于卷积自身的稀疏化以及稀疏化的ReLu函数的大量使用等原因,Dropout策略在卷积网络隐藏层中使用较少。

8.softmax

softmax函数用来将原来输出层神经元不限制取值范围的10个浮点型输出转为概率输出(取值为[0,1],且10个概率之和为1),转化方式为:   


S i = e z i ∑ k e z k S{i}=\displaystyle\frac{e^{z i}}{\sum_{k} e^{z k}} Si=kezkezi

  使用softmax的作用是方便与label求(交叉熵)损失,因为label的形式是概率的。(如"0"的label为{1, 0, 0, 0, 0, 0, 0, 0, 0, 0})。

完整代码

# encoding=utf-8

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)

"""
    输入
"""
with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784])
    x_reshape = tf.reshape(x, [-1, 28, 28, 1])
with tf.name_scope('labels'):
    y_ = tf.placeholder(tf.float32, [None, 10])

"""
    第一层卷积层
"""
with tf.name_scope('conv_1'):
    w_c1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1), name='w_c1')
    b_c1 = tf.Variable(tf.constant(0.1, shape=[32]), name='b_c1')
    conv1 = tf.nn.conv2d(x_reshape, w_c1, strides=[1, 1, 1, 1], padding='SAME', name='conv1')
    """
    tf.nn.conv2d(
        input,
        filter,
        strides,
        padding
    )
        Args:
            input:  输入的张量
            filter: 过滤器,为变量Tensor(参数需要训练),形状为[filter_高, filter_宽, 输入通道数, 输出通道数]
            strides: 过滤器移动的步长
            padding: 填充算法,有两种方式,分别为"SAME"和"VALID"

    """
    conv1 = tf.nn.relu(conv1 + b_c1, name='relu1')  # 使用relu激活函数
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
    """
    tf.nn.max_pool(
        value,
        ksize,
        strides,
        padding,
        data_format='NHWC',
        name=None
    )
        Args:
            input:输入的张量
            ksize:输入张量的每个维度的窗口大小.
            strides:输入张量的每个维度的滑动窗口的步幅.
            padding:一个字符串,可以是'VALID'或'SAME'.填充算法.
    """

"""
    第二层卷积层
"""
with tf.name_scope('conv_2'):
    w_c2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1), name='w_c2')
    b_c2 = tf.Variable(tf.constant(0.1, shape=[64]), name='b_c2')
    conv2 = tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME', name='conv2')
    conv2 = tf.nn.relu(conv2 + b_c2, name='relu2')  # 使用relu激活函数
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2')

"""
    全连接层
"""
with tf.name_scope('fc'):
    w_d = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1), name='w_d')
    b_d = tf.Variable(tf.constant(0.1, shape=[1024]), name='b_d')
    dense = tf.reshape(conv2, [-1, 7 * 7 * 64])
    dense = tf.matmul(dense, w_d)
    dense = tf.nn.relu(dense + b_d, name='relu_d')
    # 使用Dropout, keep_prob是一个占位符, 训练时为0.5, 测试时为1
    keep_prob = tf.placeholder(tf.float32)
    dense = tf.nn.dropout(dense, keep_prob)

"""
    输出层
"""
with tf.name_scope('output'):
    w_out = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1), name='w_out')
    b_out = tf.Variable(tf.constant(0.1, shape=[10]), name='b_out')
    y = tf.matmul(dense, w_out) + b_out

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
optimizer = tf.train.AdamOptimizer(1e-4).minimize(loss)

correct = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    tf.summary.FileWriter('logs/', sess.graph)
    for i in range(20000):
        batch = mnist.train.next_batch(50)
        if i % 100 == 0:
            # 每100次输出一次准确率
            acc = sess.run(accuracy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.})
            print('step %d, accuracy:%g' % (i, acc))
        # 训练
        sess.run(optimizer, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

    acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.})
    print('training completed, test accuracy:%g' % acc)

参考资料

[1] https://www.cnblogs.com/zf-blog/p/6075286.html
[2] https://blog.csdn.net/dss_dssssd/article/details/82659316
[3] https://blog.csdn.net/glory_lee/article/details/77899465
[4] https://blog.csdn.net/yjl9122/article/details/70198357

我的博客

如果这些内容对你有所帮助,可以关注我的个人博客哦~
http://www.xyu.ink/blog

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
神经网络(CNN)是一种深度学习模型,被广泛应用于图像处理领域。回归任务是CNN的一种应用,主要是预测一个连续值,而不是一个离散的类别。本文将介绍基于tensorflowCNN回归任务的实现。 1. 数据准备 首先,我们需要准备数据集。对于回归任务,我们需要一个由输入值和对应的输出值组成的数据集。在本文中,我们将使用房价数据集,其中输入值是房子的特征,如面、房间数量等,输出值是房价。 从sklearn.datasets中导入波士顿房价数据: ```python from sklearn.datasets import load_boston import numpy as np dataset = load_boston() x = dataset.data y = dataset.target x = (x - np.mean(x, axis=0)) / np.std(x, axis=0) # 归一化 ``` 在这里,我们使用了数据归一化的方法,将所有特征缩放到相同的范围内。这有助于提高模型的训练和预测效果。 2. 搭建模型 接下来,我们将使用tensorflow搭建CNN回归模型。模型将包含几个卷层、池化层和全连接层。 ```python import tensorflow as tf model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(x.shape[1], 1)), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(1) ]) model.compile(optimizer='adam', loss='mse') ``` 在这里,我们选用了一个具有32个过滤器(filter),每个过滤器大小为(3, 3)的卷层,并使用ReLU激活函数。接下来使用最大池化层得到池化输出进行下一层的输入处理。如此依照此规律搭建下去,最终一维的输出用作房价预测。最后,我们使用均方误差作为损失函数,优化器选用adam。 3. 模型训练和预测 现在,我们可以开始训练模型了。我们将数据集分为训练集和测试集,并使用fit()方法对模型进行训练。 ```python x = np.expand_dims(x, axis=2) model.fit(x, y, batch_size=32, epochs=50, validation_split=0.1) ``` 接下来,我们可以使用predict()方法对新数据进行预测。 ```python x_test = np.random.rand(10, x.shape[1], 1) y_pred = model.predict(x_test) print(y_pred) ``` 在这里,我们生成了一个十个样本的测试集,并使用predict()方法对其进行预测。 总结 本文介绍了如何使用tensorflow搭建卷神经网络回归模型,并使用boston房价数据集进行训练和预测。通过本文的学习,你可以了解CNN回归任务的基本概念和实现方法,帮助你更好地理解深度学习模型的应用和应用场景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值