💥💥💥💥💞💞💞💞💞💞欢迎来到凤凰科研社博客之家💞💞💞💞💞💞💥💥💥💥
✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码 论文复现 程序定制 期刊写作 科研合作 扫描文章底部QQ二维码。
🍎个人主页:凤凰科研社
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(凤凰科研社版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、VRP简介
1 VRP基本原理
车辆路径规划问题(Vehicle Routing Problem,VRP)是运筹学里重要的研究问题之一。VRP关注有一个供货商与K个销售点的路径规划的情况,可以简述为:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。
VRP的图例如下所示:
2 问题属性与常见问题
车辆路径问题的特性比较复杂,总的来说包含四个方面的属性:
(1)地址特性包括:车场数目、需求类型、作业要求。
(2)车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。
(3)问题的其他特性。
(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。
3 常见问题有以下几类:
(1)旅行商问题
(2)带容量约束的车辆路线问题(CVRP)
该模型很难拓展到VRP的其他场景,并且不知道具体车辆的执行路径,因此对其模型继续改进。
(3)带时间窗的车辆路线问题
由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。带时间窗车辆路径问题(VRPTW)是在VRP上加上了客户的被访问的时间窗约束。在VRPTW问题中,除了行驶成本之外, 成本函数还要包括由于早到某个客户而引起的等待时间和客户需要的服务时间。在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同。
模型2(参考2017 A generalized formulation for vehicle routing problems):
该模型为2维决策变量
(4)收集和分发问题
(5)多车场车辆路线问题
参考(2005 lim,多车场车辆路径问题的遗传算法_邹彤, 1996 renaud)
由于车辆是同质的,这里的建模在变量中没有加入车辆的维度。
(6)优先约束车辆路线问题
(7)相容性约束车辆路线问题
(8)随机需求车辆路线问题
4 解决方案
(1)数学解析法
(2)人机交互法
(3)先分组再排路线法
(4)先排路线再分组法
(5)节省或插入法
(6)改善或交换法
(7)数学规划近似法
(8)启发式算法
5 VRP与VRPTW对比
⛄二、头脑风暴优化算法DBO求解带时间窗和同时取送货的车辆路径问题简介
1 头脑风暴优化算法DBO
1.1 算法灵感
头脑风暴优化算法(Brain Storming Optimization Algorithm, BSO)是2011年提出的一种群智能优化算法,其灵感来源于头脑风暴法。当一群人围绕一个特定的兴趣领域产生新观点的时候,这种情境就叫做头脑风暴。头脑风暴法是一种充分开发人类创造性思维解决问题的方法。
1.2 算法介绍
1.2.1 初始化
在种群初始化过程中,聚集一组尽可能不同背景的人,可以看作是在解空间的动态范围内随机均匀分布的个体种群。整个个体种群可以是完全随机产生的,或者只随机产生一部分种群,其余的个体种群将通过从已经随机产生的个体添加随机扰动来产生。
1.2.2聚类
头脑风暴中任何不同的想法都可以作为寻找更好的解决方案的线索。头脑风暴小组每一轮需要产生足够的想法,但不需要太多,因为太多的想法容易发散,导致远离了目标。为了加快寻找足够好的想法,我们还需要让头脑风暴小组集中精力在一些具有高潜力的领域产生想法。因为每个问题所有者都有不同的专业知识,因此所选择的想法是不同的。因此BSO采用的是 k-means 聚类算法,将相同领域或者相似领域的成员分为一组。种群中所有的个体都被聚集成几个集群。每个集群的集群中心可以是该集群中性能最好的个体,也可以是集群的中间个体。
1.2.3 个体更新
在BSO算法中,新个体是选取一个或几个集群中的中心或者普通个体添加随机扰动产生的,当选取一个集群产生新个体时,公式如下:
2 头脑风暴优化算法DBO步骤
头脑风暴优化算法步骤如下:
(1)初始化种群:随机生成一定数量的个体作为初始种群。
(2)计算适应度:根据问题的特点,计算每个个体的适应度值。
(3)选择操作:根据适应度值,选择一定数量的个体作为父代。
(4)变异操作:对父代进行变异操作,生成新的个体。
(5)交叉操作:对父代和新个体进行交叉操作,生成新的个体。
(6)更新种群:根据一定的规则,更新种群中的个体。
(7)判断终止条件:判断是否满足终止条件,如果满足则输出最优解,否则返回第3步。
3 头脑风暴优化算法DBO求解带时间窗和同时取送货的车辆路径问题
头脑风暴算法可以用于求解带时间窗和同时取送货的车辆路径问题。该问题是指在一定时间窗口内,使得所有货物被送达并且车辆行驶的总路程最短。具体实现过程如下:
(1)首先,将所有货物按照时间窗口和位置进行分类。
(2)然后,随机生成一组初始解,并计算其总路程。
(3)接着,对于每个时间窗口内的货物,使用头脑风暴算法进行路径优化。
(4)最后,将所有路径拼接起来,得到最终的车辆路径。
⛄三、部分源代码
tic
clear
clc
%% 用xlsread函数来读取xlsx文件
data=xlsread(‘实例验证数据.xlsx’,‘转换后数据’,‘A2:H17’);
cap=150; %车辆最大装载量
v=30/60; %车辆行驶速度=30km/h=30/60km/min
%% 提取数据信息
E=data(1,6); %配送中心时间窗开始时间
L=data(1,7); %配送中心时间窗结束时间
vertexs=data(:,2:3); %所有点的坐标x和y
customer=vertexs(2:end,:); %顾客坐标
cusnum=size(customer,1); %顾客数
v_num=10; %车辆最大允许使用数目
demands=data(2:end,4); %需求量
pdemands=data(2:end,5); %回收量
a=data(2:end,6); %顾客时间窗开始时间[a[i],b[i]]
b=data(2:end,7); %顾客时间窗结束时间[a[i],b[i]]
s=data(2:end,8); %客户点的服务时间
h=pdist(vertexs);
dist=squareform(h); %距离矩阵
N=cusnum+v_num-1; %解长度=顾客数目+车辆最多使用数目-1
%% 参数初始化
alpha=10; %违反的容量约束的惩罚函数系数
belta=100; %违反时间窗约束的惩罚函数系数
MAXGEN=150; %最大迭代次数
NIND=50; %种群数目
cluster_num=5; %聚类数目
p_replace=0.1; %用随机解替换一个聚类中心的概率
p_one=0.5; %选择1个聚类的概率
p_two=1-p_one; %选择2个聚类的概率,p_two=1-p_one
p_one_center=0.3; %选择1个聚类中聚类中心的概率
p_two_center=0.2; %选择2个聚类中聚类中心的概率
%% 种群初始化
Population=InitPop(NIND,N);
%% 主循环
gen=1; %计数器初始化
bestInd=Population(1,:); %初始化全局最优个体
bestObj=ObjFunction(bestInd,v_num,cusnum,cap,demands,pdemands,a,b,s,L,dist,v,alpha,belta); %初始全局最优个体的目标函数值
BestPop=zeros(MAXGEN,N); %记录每次迭代过程中全局最优个体
BestObj=zeros(MAXGEN,1); %记录每次迭代过程中全局最优个体的目标函数值
BestTD=zeros(MAXGEN,1); %记录每次迭代过程中全局最优个体的总距离
while gen<=MAXGEN
%% 计算目标函数值
Obj=ObjFunction(Population,v_num,cusnum,cap,demands,pdemands,a,b,s,L,dist,v,alpha,belta);
%% K-means聚类
Idx=kmeans(Obj,cluster_num,‘Distance’,‘cityblock’,‘Replicates’,2);
cluster=cell(cluster_num,2); %将解储存在每一个聚类中
order_cluster=cell(cluster_num,2); %将储存在每一个聚类中的个体按照目标函数值排序
for i=1:cluster_num
cluster{i,1}=Population(Idx==i,:); %将个体按照所处的聚类编号储存到对应的聚类中
cluster_row(i)=size(cluster{i,1},1); %计算当前聚类中个体数目
for j=1:cluster_row(i)
Individual=cluster{i,1}(j,:); %当前聚类中第j个个体
%计算当前聚类中第j个个体的目标函数值
cluster{i,2}(j,1)=ObjFunction(Individual,v_num,cusnum,cap,demands,pdemands,a,b,s,L,dist,v,alpha,belta);
end
[order_cluster{i,2},order_index]=sort(cluster{i,2}) ; %将当前聚类中的所有个体按照目标函数值从小到大的顺序进行排序
order_cluster{i,1}=cluster{i,1}(order_index,:); %将当前聚类中的所有个体按照排序结果重新排列
order_index=0; %重置排序序号
end
⛄四、运行结果
⛄五、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]黄戈文,蔡延光,戚远航,陈厚仁,王世豪.自适应遗传灰狼优化算法求解带容量约束的车辆路径问题[J].电子学报. 2019,47(12)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合