转:用一个例子说明Floyd算法

弗洛伊德算法(Floyd's algorithm)是一种用于求带权图中最短路径的算法,适用于带有正负权边的图(但不能有负环)。这种算法也有时被称为弗洛伊德-沃尔什算法。该算法基于动态规划,其时间复杂度为O(V^3),其中V是图中的顶点数。此外,该算法还可用于检测图中的负环并求出传递闭包。

下面是一个使用弗洛伊德算法求图中所有顶点对之间最短路径的示例:

假设我们有一个具有4个顶点(A,B,C和D)的图,以及以下带权边:

  A -> B: 3

  A -> C: 8

  A -> D: -4

  B -> C: 1

  B -> D: 7

  C -> D: 2

我们可以用矩阵表示每对顶点之间的距离,其中第i行第j列的元素表示从顶点i到顶点j的最短距离。最初,我们将矩阵设置为图中边的值:

  | 0 3 8 -4 |

  | INF 0 1 7 |

  | INF INF 0 2 |

  | INF INF INF 0 |

然后我们使用弗洛伊德算法来更新矩阵:

对于 k = 1 到 V (V 是顶点数),其中V = 4:

  1. 对于 i = 1 到 V:
  2. 对于 j = 1 到 V:
  3. 如果 dist[i][j] > dist[i][k] + dist[k][j],则更新 dist[i][j] = dist[i][k] + dist[k][j]

算法运行后,最终矩阵将是:

  | 0 3 4 0 |

  | INF 0 1 7 |

  | INF INF 0 2 |

  | INF INF INF 0 |

从这个矩阵中,我们可以看出从顶点A到顶点B的最短距离是3,从A到C是4,从A到D是0,从B到C是1等。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我们来看一个更具体的例子来理解 Floyd 算法。 假设我们有一个带权有向图,其邻接矩阵如下: ``` 0 2 6 4 ∞ 0 3 ∞ 7 ∞ 0 1 5 ∞ 12 0 ``` 其中,∞ 表示两个节点之间没有边相连,即权重为无穷大。 我们想要求出任意两点之间的最短路径长度,使用 Floyd 算法可以实现。 首先,我们定义一个二维数组 `dp`,表示从节点 i 到节点 j 的最短路径长度。初始状态下,`dp[i][j]` 的值为图中节点 i 到节点 j 的边权值,如果 i 和 j 之间没有边相连,则其值为无穷大。 然后,我们对 `dp` 数组进行更新,通过中间节点 k 来缩小路径长度。具体操作如下: 遍历所有节点 k,然后再遍历所有节点 i 和 j。如果从节点 i 到节点 j 经过节点 k 可以缩短路径长度,则更新 `dp[i][j]` 的值为 `dp[i][k] + dp[k][j]`。 最终,当遍历完所有节点 k 后,`dp` 数组中存储的就是任意两点之间的最短路径长度。 对于上面的邻接矩阵,经过一次 Floyd 算法的迭代,`dp` 数组会变成如下状态: ``` 0 2 5 4 ∞ 0 3 ∞ 7 9 0 1 5 7 10 0 ``` 其中,`dp[i][j]` 表示从节点 i 到节点 j 的最短路径长度。可以看到,经过一次迭代后,我们可以找到所有不经过中间节点的最短路径长度。 接下来,我们再进行一次迭代,就可以找到所有经过一个中间节点的最短路径长度。最终,经过三次迭代后,`dp` 数组会变成如下状态: ``` 0 2 5 4 7 0 3 8 6 8 0 1 5 7 10 0 ``` 可以看到,经过三次迭代后,我们已经找到了所有节点之间的最短路径长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值