3D 视觉定位软包拆垛:技术剖析与系统实现详解

在现代工业生产和物流场景中,自动化拆垛已成为提升效率和降低人工操作风险的关键环节。特别是在涉及软包、纸箱、麻包袋等不规则物体的行业,如塑胶粒子、化肥、食品加工等。

软包拆垛的行业挑战

软包、纸箱等不规则物体在堆垛时由于形状不规则、材质多样,加大了自动化拆垛的难度,特别是在应对变形、贴合或斜放等情况时,传统的机械臂常常无从下手。企业面临的主要难题包括:

  • 软包变形:软包在堆叠过程中容易变形,导致抓取难度加大。

  • 效率低下:人工拆垛耗时长,且长期高强度作业易出错。

  • 安全隐患:传统操作下的漏包和破包,不仅增加了额外的材料损耗,还存在安全风险。

方案亮点

面对以上行业挑战,3D视觉软包拆垛系统通过融合RGB-D深度视觉相机和智能算法,为拆垛操作提供了精准的视觉数据和智能路径规划,显著提升了自动化拆垛的效率与准确度。

  • 高性能RGB-D相机与AI算法

    3D相机能够同时捕捉垛型的表面纹理信息和点云数据,结合AI算法的深度学习,系统可以精准识别和定位软包、纸箱等不规则物体,充分利用其表面纹理和边缘特征,确保每次抓取动作的稳定性和准确性,有效减少掉包和破包现象。

  • 算法集成在相机端

    智能拆垛算法在相机内部运行,实现了实时数据处理,减少了对外部工控机的依赖。这一设计大大简化了系统部署,降低了总体成本,同时提升了系统的响应速度和操作效率。

  • 环境光干扰能力强

    系统具备抗环境光干扰能力,能够在复杂光照环境下保持稳定的视觉识别性能,无论是强光还是弱光条件,系统都能有效地捕捉到物体的细节,确保拆垛任务的顺利执行。

  • 自适应识别

    无需提前采集训练数据,系统能自适应识别软包与麻袋垛形,支持六花垛、五花垛、回形垛等复杂结构,实现高效拆垛,减少调试难度。

  • 基于软包位置的顺序规划

    通过获取每个软包的位置信息,提供合理的抓取顺序规划。即使面对复杂的堆叠形态,系统也能确保每个软包被高效、安全地处理。

  • 四点标定,简便高效

    提供四点标定方法,用户可灵活选择标定点,系统自动计算相机与机械臂的转换矩阵。

广泛适配与集成能力

3D视觉软包拆垛系统已适配多家主流工业机器人品牌,如ABB、库卡、发那科、遨博、越疆等,支持TCP/IP通讯,实现快速无缝集成。凭借模块化设计,系统可以轻松集成到现有自动化生产线中,大幅减少升级自动化过程中的技术壁垒。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迈尔微视MRDVS

你的鼓励将是小编创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值