题目要求
原题目链接:11. 盛最多水的容器
题目要求如下:
给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明:你不能倾斜容器。
示例如下:
示例1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
解法1:双指针
思路
整体思路是:设定两个指针,一个指向最左侧的柱子,一个指向最右侧的柱子,通过使左指针右移右指针左移的方式遍历全部柱子,并记录保存最优解。
有了基本思路后,有两个问题需要解决,第一个问题是如何决定每次遍历移动哪个指针几步,第二个问题是每次遍历记录并保存最优解。
第二个问题很容易解决,只需要使用一个额外的变量,在每次变量的时候,保留当前遍历情况的容水量与该变量的最大值即可。
最终要的问题就是决定指针如何移动,移动时可能改变水容收益的变量有两个,其一是两个柱子中较矮的高度,以及两个柱子之间的距离。
再来考虑要决策指针移动时的状态,移动的状况无非有三种,①左指针高度大于右指针②左指针高度小于右指针③左右指针高度相等。假设必然移动左指针,我们在上述三种情况下讨论收益,最终来决定指针如何移动。
首先需要明确一件事,那就是无论向内侧移动哪个指针,两柱之间的距离一定会减小,所以只需要考虑两柱较矮柱高度的影响即可。
-
左指针高度大于右指针的情况。此时的决策相当于移动较高的指针,移动后可能有三种情况:
- 新指针高度不变。
- 新指针高度增加。
- 新指针高度减小。具体细分为新指针高度仍大于右指针(原本较矮的指针)以及新指针高度小于等于右指针。
不难发现,无论是哪一种情况,最终的收益一定小于不移动左指针。因此可以完全排除移动较高的指针。
-
左指针高度小于右指针的情况。此时的决策相当于移动较矮的指针,移动后可能有三种情况:
- 新指针高度不变。
- 新指针高度增加。
- 新指针高度减小。
通过观察不难发现,新指针高度减小或不变总收益一定减小,但新指针高度增加时总收益有可能增大,因此应该选择移动较矮的指针。
-
左右指针相等的情况。不需要考虑,因为我们只关注当前左右指针的状态,不关注其后移一位指针的状态,所以无论移动哪一个指针都一样。
完整AC代码
class Solution {
public int maxArea(int[] height) {
int l = 0;
int r = height.length - 1;
int ans = 0;
while(l < r){
ans = Math.max(ans, Math.min(height[l], height[r]) * (r - l));
if(height[l] <= height[r])l++;
else r--;
}
return ans;
}
}
复杂度分析
时间复杂度:O(N),只需要一次遍历即可解决问题,因此时间复杂度等同一次遍历。
空间复杂度:O(1),只使用了常数个额外空间存储信息。