Product Integration

Richard D. Gill, Product integration

一般的积分是指黎曼积分, 其计算是把区域无限细分求和并取极限, 有另外一种积分是把区域无限细分求积并取极限, 这个在生存模型中有很多应用.

生存模型

设生存的时间为随机变量 T T T, 则生存函数定义为
S ( t ) : = P r ( T ≥ t ) ,   t > 0 , S(t):= \mathrm{Pr} (T \ge t), \: t>0, S(t):=Pr(Tt),t>0,
显然 S ( 0 ) = 0 S(0)=0 S(0)=0. 生存函数表示, 一个个体生存时间超过 t t t的概率.

连续情形

设随机变量 T T T所对应的密度函数为 f ( t ) f(t) f(t), 并定义hazard rate为
α ( t ) : = lim ⁡ h → 0 P r ( t ≤ T ≤ t + h ∣ T ≥ t ) h , \alpha (t) := \mathop{\lim} \limits_{h \rightarrow 0} \frac{\mathrm{Pr}(t \le T \le t+h|T \ge t)}{h}, α(t):=h0limhPr(tTt+hTt),
注意到
P r ( t ≤ T ≤ t + h ∣ T ≥ t ) h = P r ( t ≤ T ≤ t + h ) h ⋅ P r ( T ≥ t ) , \frac{\mathrm{Pr}(t \le T \le t+h|T \ge t)}{h}= \frac{\mathrm{Pr}(t\le T \le t+h)}{h \cdot \mathrm{Pr}(T\ge t)}, hPr(tTt+hTt)=hPr(Tt)Pr(tTt+h),

α ( t ) = f ( t ) / S ( t ) . \alpha(t)=f(t)/S(t). α(t)=f(t)/S(t).

f ( t ) = d F ( t ) d t = d ( 1 − S ( t ) ) d t = − d d t S ( t ) = : S ′ ( t ) . f(t) =\frac{\mathrm{d}F(t)}{\mathrm{d}t} = \frac{\mathrm{d}(1-S(t))}{\mathrm{d}t}=-\frac{d}{dt}S(t)=:S'(t). f(t)=dtdF(t)=dtd(1S(t))=dtdS(t)=:S(t).
所以
α ( t ) = − S ′ ( t ) S ( t ) = − d d t log ⁡ S ( t ) , \alpha(t)=-\frac{S'(t)}{S(t)}=-\frac{\mathrm{d}}{\mathrm{d}t} \log S(t), α(t)=S(t)S(t)=dtdlogS(t),

S ( t ) = exp ⁡ { − ∫ 0 t α ( s ) d s } ,   t > 0. S(t)=\exp \{ -\int_{0}^t \alpha(s) \mathrm{d}s\}, \: t>0. S(t)=exp{0tα(s)ds},t>0.

离散情形

此时假设 f ( t ) = P r ( T = t ) f(t)=\mathrm{Pr}(T=t) f(t)=Pr(T=t),
α ( t ) : = P r ( T = t ∣ T ≥ t ) = f ( t ) / S ( t ) , \alpha(t):=\mathrm{Pr}(T=t|T\ge t)=f(t)/S(t), α(t):=Pr(T=tTt)=f(t)/S(t),
可以证明
S ( t ) = ∏ 0 t ( 1 − α ( s ) ) , S(t)= \prod_0^t (1-\alpha(s)), S(t)=0t(1α(s)),
注意, 这里的 ∏ \prod 个人感觉都没法用极限去理解, 只能用无限(即便是不可数)个1相乘仍为1理解.

不妨设 f ( t ) f(t) f(t)仅在 0 < t 1 < t 2 < ⋯ 0<t_1 < t_2 < \cdots 0<t1<t2<处非零, 则
S ( t ) = 1 ,   t ≤ t 1 , S ( t ) = 1 − f ( t 1 ) = 1 − α ( t 1 ) ,   t 1 < t ≤ t 2 , S(t)=1, \: t\le t_1, \\ S(t)=1-f(t_1)=1-\alpha(t_1), \: t_1 < t \le t_2, \\ S(t)=1,tt1,S(t)=1f(t1)=1α(t1),t1<tt2,
S ( t ) = 1 − f ( t 1 ) − f ( t 2 ) = 1 − α ( t 1 ) − α ( t 2 ) S ( t 2 ) = ( 1 − α ( t 1 ) ( 1 − α ( t 2 ) ) ,   t 2 < t ≤ t 3 ⋯ S(t)=1-f(t_1)-f(t_2)=1-\alpha(t_1)- \alpha(t_2)S(t_2)=(1-\alpha(t_1)(1-\alpha(t_2)), \: t_2 < t \le t_3 \\ \cdots S(t)=1f(t1)f(t2)=1α(t1)α(t2)S(t2)=(1α(t1)(1α(t2)),t2<tt3

统一

记连续情况下
A ( t ) = ∫ 0 t α ( s ) d s A(t) = \int_0^t \alpha(s) \mathrm{d}s A(t)=0tα(s)ds
离散情况下
A ( t ) = ∑ 0 t α ( s ) , A(t) =\sum_0^t \alpha(s), A(t)=0tα(s),
这里的 ∑ \sum 请用勒贝格积分理解, 二者在实变函数下统一为
A ( t ) = ∫ 0 t 1 S ( s ) d S ( s ) . A(t) = \int_0^t \frac{1}{S(s)} \mathrm{d}S(s). A(t)=0tS(s)1dS(s).
A ( t + h ) − A ( t ) A(t+h)-A(t) A(t+h)A(t)可以理解为个体在 [ t , t + h ] [t,t+h] [t,t+h]内死亡的概率, 则
S ( t ) = lim ⁡ max ⁡ ∣ t i − t i − 1 ∣ → 0 ∏ 0 t ( 1 − ( A ( t i ) − A ( t i − 1 ) ) = : ∏ 0 t ( 1 − d A ( s ) ) S(t)= \lim_{\max |t_i - t_{i-1}| \rightarrow 0} \prod_0^t (1-(A(t_i)-A(t_{i-1}))=:\prod_0^t (1-dA(s)) S(t)=maxtiti10lim0t(1(A(ti)A(ti1))=:0t(1dA(s))
意思就是, 个体想活过 t t t, 必须前面的每一个阶段都是活着的(严格的推导, 以及极限存在等等不知).

还有在矩阵和马尔可夫上的推广, 一知半解, 就不记录了.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值