Learning a Similarity Metric Discriminatively, with Application to Face Verification

Chopra S, Hadsell R, Lecun Y, et al. Learning a similarity metric discriminatively, with application to face verification[C]. computer vision and pattern recognition, 2005: 539-546.

Hadsell R, Chopra S, Lecun Y, et al. Dimensionality Reduction by Learning an Invariant Mapping[C]. computer vision and pattern recognition, 2006: 1735-1742.

@article{chopra2005learning,
title={Learning a similarity metric discriminatively, with application to face verification},
author={Chopra, Sumit and Hadsell, Raia and Lecun, Yann},
volume={1},
pages={539–546},
year={2005}}

@article{hadsell2006dimensionality,
title={Dimensionality Reduction by Learning an Invariant Mapping},
author={Hadsell, Raia and Chopra, Sumit and Lecun, Yann},
volume={2},
pages={1735–1742},
year={2006}}

这俩篇论文介绍了一种contrastive loss (最近很火, 但是感觉虽然核心思想是一致的, 现在的contrastive loss在此基础上更进了一步), 实际上就是最大化类间距离, 最小化类内距离.

主要内容

genuine 和 impostor

首先, 给定数据集 D = { ( x i , y i ) } i = 1 N \mathcal{D}=\{(x_i,y_i)\}_{i=1}^N D={(xi,yi)}i=1N, 其分别代表数据和标签, 根据此数据集进行配对,
X i j = ( x i , x j ) , X_{ij}=(x_i, x_j), Xij=(xi,xj),
若对应的 y i = y j y_i=y_j yi=yj则称该对为genuine(真实的), 否则为impostor(虚假的), 记为 Y i j Y_{ij} Yij(1:genuine, 0:impostor).
一个很自然的想法就是真实的对之间的距离应该小(就是最小化类内距离), 虚假对的数据间的距离大(即最大化类间距离).

不过在做这个工作之前, 我们需要通过一个映射 G W G_W GW x x x映射到一个低维的空间中去, 用现在的话讲, 这是一个提特征的过程, 并将上面的最大最小化的思想套用到这些特征 G W ( x ) G_W(x) GW(x)上去. 用
E W ( X i j ) : = ∥ G W ( x i ) − G W ( x j ) ∥ E_W(X_{ij}) := \|G_W(x_i)-G_W(x_j)\| EW(Xij):=GW(xi)GW(xj)
来表示一对数据之间的"能量" (实际上就是特征的距离).

如何最大最小呢? 最小化下面的式子:
L ( W ) = ∑ i , j Y i j L G ( E W ( X i j ) ) + ( 1 − Y i j ) L I ( E W ( X i j ) ) . \mathcal{L}(W)=\sum_{i,j} Y_{ij}L_G(E_W(X_{ij}))+(1-Y_{ij})L_{I}(E_W(X_{ij})). L(W)=i,jYijLG(EW(Xij))+(1Yij)LI(EW(Xij)).

文1

L G ( E W ) : = 2 Q ( E W ) 2 L I ( E W ) : = 2 Q exp ⁡ ( − 2.77 Q E W ) , L_G(E_W):= \frac{2}{Q}(E_W)^2 \\ L_I(E_W):= 2Q \exp(-\frac{2.77}{Q}E_W), LG(EW):=Q2(EW)2LI(EW):=2Qexp(Q2.77EW),
其中 Q Q Q为一常数, 表 E W E_W EW的上界, 不是很理解为什么要这么构造.

文2

L G ( E W ) : = 1 2 ( E W ) 2 L I ( E W ) : = 1 2 { max ⁡ ( 0 , m − E W ) } 2 , L_G(E_W):= \frac{1}{2}(E_W)^2 \\ L_I(E_W):=\frac{1}{2} \{\max (0, m-E_W)\}^2, LG(EW):=21(EW)2LI(EW):=21{max(0,mEW)}2,
其中 m m m是认为给定的一个margin.

注: 文1中并没有注明去何种范数, 但有这么一句话:

Second, we must emphasize that using the square norm instead of the L1 norm for the energy would not be appropriate.

照这个说法, 那就应该用 L 1 L_1 L1, 可第二篇是显示使用 L 2 L_2 L2的, 难道就因为第二篇是应用在数据降维中的缘故?

实际上, G W G_W GW就是一个压缩映射, 文二用此来进行数据降维, 而文一在此基础上进行分类. 按照现在的做法, 就应该是利用 G W G_W GW作为一个特征提取器, 然后再其后加一个分类器用于分类, 文1是假设每一个个体(类)服从一个多维的正态分布, 这个正态分布用这个类中的数据(经过映射后的特征)来估计. 假设每个类的概率密度函数为 ϕ i \phi_i ϕi, 便用
ϕ i ( x ) ϕ i ( x ) + c i , \frac{\phi_i(x)}{\phi_i(x)+c_i}, ϕi(x)+ciϕi(x),
来表示 x x x与第 i i i类的样本关系为genuine的可能性.
c i = m e a n { ϕ i ( x ) : x ∈ D , y ≠ i } . c_i = \mathrm{mean} \{\phi_i(x):x\in\mathcal{D}, y\not = i\}. ci=mean{ϕi(x):xD,y=i}.
没理解错应该是这个意思.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值