Reproducing Kernel Hilbert Space (RKHS)

文章目录

RKHS-wiki

这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了.

主要内容

首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质.

Hilbert空间 H \mathcal{H} H, 其中的每个元素 f : X → K f: \mathcal{X} \rightarrow \mathbb{K} f:XK, 并由内积 ⟨ ⋅ , ⋅ , ⟩ H \langle \cdot, \cdot, \rangle_{\mathcal{H}} ,,H建立联系. 我们考虑如下的线性算子:
δ x ( f ) = f ( x ) . \delta_x(f) = f(x). δx(f)=f(x).
进一步假设 δ x \delta_x δx是有界线性算子, 则根据Riesz表示定理可知, 存在唯一的 ϕ x ∈ H \phi_x \in \mathcal{H} ϕxH,
f ( x ) = δ x ( f ) = ⟨ f , ϕ x ⟩ H , f(x) = \delta_x(f) = \langle f, \phi_x \rangle_{\mathcal{H}}, f(x)=δx(f)=f,ϕxH,
此时
δ x ( ϕ y ) = ⟨ ϕ y , ϕ x ⟩ H . \delta_x (\phi_y) = \langle \phi_y, \phi_x \rangle_{\mathcal{H}}. δx(ϕy)=ϕy,ϕxH.

RKHS指的就是每一个 δ x , ∀ x ∈ X \delta_x, \forall x \in \mathcal{X} δx,xX均为有界线性算子, 换言之,
∣ f ( x ) − g ( x ) ∣ = ∣ δ x ( f ) − δ x ( g ) ∣ ≤ M x ∥ f − g ∥ H , ∀ x ∈ X . |f(x) - g(x)| = |\delta_x(f) - \delta_x (g)| \le M_x \|f - g\|_{\mathcal{H}}, \quad \forall x \in \mathcal{X}. f(x)g(x)=δx(f)δx(g)MxfgH,xX.
一般的, RKHS总会和某些特定的kernel K K K联系在一起, 实际上, 对于上述情况:
K ( x , y ) : = ⟨ ϕ x , ϕ y ⟩ . K(x, y) := \langle \phi_x, \phi_y \rangle. K(x,y):=ϕx,ϕy.

在什么情况下可以通过 K K K确定一个Hilbert 空间?

Moore-Aronszajn 定理: K K K对称正定, 则存在唯一的Hilbert空间, 其reproducing kernel是 K K K.

proof:

首先通过K构造线性空间 s p a n ( { K ( ⋅ , x ) : x ∈ X } ) \mathrm{span}(\{K(\cdot, x): x \in \mathcal{X}\}) span({K(,x):xX}), 再赋予内积
⟨ K x , K y ⟩ H = K ( x , y ) . \langle K_x, K_y \rangle_{\mathcal{H}} = K(x, y). Kx,KyH=K(x,y).
其中, 内积的可交换性由K的对称性带来, 内积 ( x , x ) = 0 (x, x)=0 (x,x)=0当且仅当 x = 0 x=0 x=0由正定性带来.

再令上述内积空间的闭包为
H , \mathcal{H}, H,
即包括
f = ∑ i a i K x i . f = \sum_i a_i K_{x_i}. f=iaiKxi.
显然
f ( x ) = ∑ i a i K ( x , x i ) = ⟨ f , K x ⟩ H . f(x) = \sum_i a_i K(x, x_i) = \langle f, K_x \rangle_{\mathcal{H}}. f(x)=iaiK(x,xi)=f,KxH.

∣ f ( x ) − g ( x ) ∣ = ∣ ⟨ f − g , K x ⟩ H ∣ ≤ ∥ K x ∥ H ∥ f − g ∥ H . |f(x)-g(x)| = |\langle f-g, K_x \rangle_{\mathcal{H}}| \le \|K_x\|_{\mathcal{H}} \|f-g\|_{\mathcal{H}}. f(x)g(x)=fg,KxHKxHfgH.
H \mathcal{H} H是RKHS且其reproducing kernel即为 K K K.

倘若还存在别的Hilbert空间 G \mathcal{G} G, 那么显然 H ⊂ G \mathcal{H} \subset \mathcal{G} HG, 只需证明反包含即可. 对于任意的 g ∈ G g \in \mathcal{G} gG, 可分解为
g = g H + g H ⊥ , g = g_{\mathcal{H}} + g_{\mathcal{H}^{\bot}}, g=gH+gH,

g ( x ) = ⟨ g , K x ⟩ G = ⟨ g H , K x ⟩ G + ⟨ g H ⊥ , K x ⟩ G = ⟨ g H , K x ⟩ H = g H ( x ) . g(x) = \langle g, K_x \rangle_{\mathcal{G}} = \langle g_{\mathcal{H}}, K_x \rangle_{\mathcal{G}} + \langle g_{\mathcal{H}^{\bot}}, K_x \rangle_{\mathcal{G}} = \langle g_{\mathcal{H}}, K_x \rangle_{\mathcal{H}} = g_{\mathcal{H}}(x). g(x)=g,KxG=gH,KxG+gH,KxG=gH,KxH=gH(x).

g ∈ H g\in \mathcal{H} gH.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值