再生核希尔伯特空间 reproducing kernel Hilbert space RKHS

再生核希尔伯特空间(RKHS)是机器学习中的重要概念,常用于迁移学习如TCA。它涉及到希尔伯特空间、核函数和再生核等理论,通过映射到高维空间解决线性不可分问题。在TCA中,MMD衡量不同域之间的距离,而RKHS的特性在此发挥了关键作用。
摘要由CSDN通过智能技术生成

再生核希尔伯特空间 reproducing kernel Hilbert space RKHS

再生核希尔伯特空间 reproducing kernel Hilbert space (RKHS) 在机器学习中很常见,比如Transfer Learning里的经典方法TCA。

HS 希尔伯特空间

希尔伯特空间 H \mathcal{H} H是指具有如下两个性质的空间:

  1. 内积: < ⋅ , ⋅ > : H × H → R <\cdot,\cdot>: \mathcal{H}\times\mathcal{H}\rightarrow \mathbb{R} <,>:H×HR.
  2. 完备性:所有柯西序列都收敛,且极限在 H \mathcal{H} H中。

Kernel 核

X \mathcal{X} X是一个集合,比如样本集, X \mathcal{X} X上可能没有内积,也可能内积不是我们想要的(比如SVM,样本集本身线性不可分)。这时我们讲 X \mathcal{X} X映射到一个高维的Hilbert空间中 ϕ : X → H \phi:\mathcal{X}\rightarrow \mathcal{H} ϕ:XH.

核函数 k : X × X → R k: \mathcal{X}\times \mathcal{X} \rightarrow \mathbb{R} k:X×XR:
< x , y > k = < ϕ ( x ) , ϕ ( y ) > H <x,y>_k = <\phi(x),\phi(y)>_\mathcal{H} <x,y>k=<ϕ(x),ϕ(y)>H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值