再生核希尔伯特空间 reproducing kernel Hilbert space RKHS
再生核希尔伯特空间 reproducing kernel Hilbert space (RKHS) 在机器学习中很常见,比如Transfer Learning里的经典方法TCA。
HS 希尔伯特空间
希尔伯特空间 H \mathcal{H} H是指具有如下两个性质的空间:
- 内积: < ⋅ , ⋅ > : H × H → R <\cdot,\cdot>: \mathcal{H}\times\mathcal{H}\rightarrow \mathbb{R} <⋅,⋅>:H×H→R.
- 完备性:所有柯西序列都收敛,且极限在 H \mathcal{H} H中。
Kernel 核
X \mathcal{X} X是一个集合,比如样本集, X \mathcal{X} X上可能没有内积,也可能内积不是我们想要的(比如SVM,样本集本身线性不可分)。这时我们讲 X \mathcal{X} X映射到一个高维的Hilbert空间中 ϕ : X → H \phi:\mathcal{X}\rightarrow \mathcal{H} ϕ:X→H.
核函数 k : X × X → R k: \mathcal{X}\times \mathcal{X} \rightarrow \mathbb{R} k:X×X→R:
< x , y > k = < ϕ ( x ) , ϕ ( y ) > H <x,y>_k = <\phi(x),\phi(y)>_\mathcal{H} <x,y>k=<ϕ(x),ϕ(y)>H