WHT, SLANT, Haar

Gonzalez R. C. and Woods R. E. Digital Image Processing (Forth Edition)

基本

酉变换

一维的变换:
t = A f , f = A H t , A H = A ∗ T , A H A = I . \mathbf{t} = \mathbf{A} \mathbf{f}, \\ \mathbf{f} = \mathbf{A}^{H} \mathbf{t}, \\ \mathbf{A}^H = {\mathbf{A}^*}^{T}, \mathbf{A}^H\mathbf{A} = \mathbf{I}. t=Af,f=AHt,AH=AT,AHA=I.
以及二维的变换:
T = A F B T , F = A H T B ∗ , A H A = I , B T B ∗ = I . \mathbf{T} = \mathbf{A} \mathbf{F} \mathbf{B}^T, \\ \mathbf{F} = \mathbf{A}^H \mathbf{T} \mathbf{B}^*, \\ \mathbf{A}^H\mathbf{A=I}, \mathbf{B}^{T}\mathbf{B}^* =\mathbf{I}. T=AFBT,F=AHTB,AHA=I,BTB=I.

以一维的为例, 实际上就是
t u = ∑ x = 0 N − 1 f x s ( x , u ) = f T s u , u = 0 , 1 , ⋯   , N − 1 , s u = [ s ( 0 , u ) , s ( 1 , u ) , ⋯   , s ( N − 1 , u ) ] T . t_u = \sum_{x = 0}^{N-1} f_x s(x, u) = \mathbf{f}^T \mathbf{s}_u, u=0,1,\cdots, N-1,\\ \mathbf{s}_u = [s(0, u), s(1, u), \cdots, s(N-1, u)]^T. tu=x=0N1fxs(x,u)=fTsu,u=0,1,,N1,su=[s(0,u),s(1,u),,s(N1,u)]T.

A = [ s 0 , ⋯   , s N − 1 ] T . \mathbf{A} = [\mathbf{s}_0, \cdots, \mathbf{s}_{N-1}]^{T}. A=[s0,,sN1]T.

注: 下面假设: N = 2 n N=2^n N=2n.

WALSH-HADAMARD TRANSFORMS

s ( x , u ) = 1 N ( − 1 ) ∑ i = 0 n − 1 b i ( x ) b i ( u ) , s(x, u) = \frac{1}{\sqrt{N}} (-1)^{\sum_{i=0}^{n-1}b_i(x)b_i(u)}, s(x,u)=N 1(1)i=0n1bi(x)bi(u),
注意, 这里 b i ( u ) b_i(u) bi(u)表示 u u u的二进制的第 i i i位, 比如 4 4 4的二进制为 100 100 100, 此时 b 0 = 0 , b 2 = 1 b_0 = 0, b_2=1 b0=0,b2=1.

变换矩阵可以通过更通俗易懂的方式搭建:
A W = 1 N H N , H 2 N = [ H N H N H N − H N ] , H 2 = [ 1 1 1 − 1 ] . \mathbf{A}_W = \frac{1}{\sqrt{N}} \mathbf{H}_N, \\ \mathbf{H}_{2N} = \left [ \begin{array}{cc} \mathbf{H}_N & \mathbf{H}_N \\ \mathbf{H}_N & -\mathbf{H}_N \\ \end{array} \right ], \\ \mathbf{H}_{2} = \left [ \begin{array}{cc} 1 & 1 \\ 1 & -1 \\ \end{array} \right ]. AW=N 1HN,H2N=[HNHNHNHN],H2=[1111].

sequency-ordered WHT

H 4 = [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] . \mathbf{H}_{4} = \left [ \begin{array}{cc} 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1 \\ \end{array} \right ]. H4=1111111111111111.
可以发现, 第1行( u = 0 , 1 , 2 , 3 u=0, 1, 2, 3 u=0,1,2,3)的符号变换最快的(类似与DFT中的频率的概念), 故sequency-order, 即按照符号变换快慢的递增排列, 其公式如下:

s ( x , u ) = 1 N ( − 1 ) ∑ i = 0 n − 1 b i ( x ) p i ( u ) , p 0 ( u ) = b n − 1 ( u ) , p n − 1 − i ( u ) = b i ( u ) + b i + 1 ( u ) , i = 0 , ⋯   , n − 2. s(x, u) = \frac{1}{\sqrt{N}}(-1)^{\sum_{i=0}^{n-1}b_i(x)p_i(u)}, \\ p_0 (u) = b_{n-1}(u), \\ p_{n-1-i}(u) = b_i(u) + b_{i+1}(u), \quad i = 0, \cdots, n-2. s(x,u)=N 1(1)i=0n1bi(x)pi(u),p0(u)=bn1(u),pn1i(u)=bi(u)+bi+1(u),i=0,,n2.

H W ′ \mathbf{H}_{W'} HW为sequency-order的, 则 H W ′ \mathbf{H}_{W'} HW的第 u u u行与 H W \mathbf{H}_{W} HW的第 v v v行存在如下的关系:

  1. 考虑 n n nbit的二进制, 则
    u : ( u n − 1 u n − 2 ⋯ u 0 ) , v : ( v n − 1 v n − 2 ⋯ v 0 ) . u: (u_{n-1}u_{n-2}\cdots u_0),\\ v: (v_{n-1}v_{n-2}\cdots v_0). u:(un1un2u0),v:(vn1vn2v0).
  2. u u u转换成其gray code格式
    g i = u i ⊕ u i + 1 , i = 0 , ⋯   , n − 2 g n − 1 = s n − 1 . g_i = u_i \oplus u_{i+1}, \quad i=0, \cdots, n-2\\ g_{n-1} = s_{n-1}. gi=uiui+1,i=0,,n2gn1=sn1.
    其中 ⊕ \oplus 表示异或操作.
  3. g g g进行bit-reverse, 即 g i , g n − 1 − i g_i, g_{n-1-i} gi,gn1i调换位置, 则
    v i = g n − 1 − i . v_i = g_{n-1-i}. vi=gn1i.

举个例子, 假设 n = 3 n=3 n=3, u = 4 = ( 100 ) 2 u=4 = (100)_2 u=4=(100)2, 则 g = ( 110 ) 2 g = (110)_2 g=(110)2, v = ( 011 ) 2 = 3 v=(011)_2 = 3 v=(011)2=3. 即 H 8 ′ H_8' H8的第4行为 H 8 H_8 H8的第3行(注意均从0开始计数).

proof:

p n − 1 − i ( u ) = b i ( u ) + b i + 1 ( u ) ⇔ b i ( g ) = b n − 1 − i ( v ) . \begin{array}{ll} p_{n-1-i}(u) &= b_i(u) + b_{i+1}(u) \\ &\Leftrightarrow b_i(g) \\ &= b_{n-1-i}(v). \end{array} pn1i(u)=bi(u)+bi+1(u)bi(g)=bn1i(v).

注意 ⇔ \Leftrightarrow , 是这样的, b i + b i + 1 b_i + b_{i+1} bi+bi+1仅有(0, 1, 2)三种可能性, 而 ( − 1 ) 1 = − 1 (-1)^1=-1 (1)1=1否则为1,而 b i ( g ) = 1 b_i(g)=1 bi(g)=1恰好是 b i ( u ) + b i + 1 ( u ) = 1 b_i(u) + b_{i+1}(u) = 1 bi(u)+bi+1(u)=1 (根据异或的定义可得), 故可能等价替换.
p 0 ( u ) = b 0 ( v ) , p_0(u) = b_0(v), p0(u)=b0(v),
是显然的, 证毕.

下图便是按照sequency增序的表示.

SLANT TRANSFORM

A S I = 1 N S N , S N = [ 1 0 0 1 0 0 a N b N 0 − a N b N 0 0 0 I ( N / 2 ) − 2 0 0 I ( N / 2 ) − 2 0 1 0 0 − 1 0 − b N a N 0 b N a N 0 0 0 I ( N / 2 ) − 2 0 0 − I ( N / 2 ) − 2 ] [ S N / 2 0 0 S N / 2 ] , S 2 = [ 1 1 1 − 1 ] , a N = [ 3 N 2 4 ( N 2 − 1 ) ] 1 / 2 , b N = [ N 2 − 4 4 ( N 2 − 1 ) ] 1 / 2 . \mathbf{A}_{SI} = \frac{1}{\sqrt{N}}\mathbf{S}_N, \\ \mathbf{S}_{N} = \left [ \begin{array}{cccccc} 1 & 0 & \mathbf{0} & 1 & 0 & \mathbf{0} \\ a_N & b_N & \mathbf{0} & -a_N & b_N & \mathbf{0} \\ 0 & 0 & \mathbf{I}_{(N/2)-2} & 0 & 0 & \mathbf{I}_{(N/2)-2} \\ 0 & 1 & \mathbf{0} & 0 & -1 & \mathbf{0} \\ -b_N & a_N & \mathbf{0} & b_N & a_N & \mathbf{0} \\ 0 & 0 & \mathbf{I}_{(N/2)-2} & 0 & 0 & \mathbf-{I}_{(N/2)-2} \\ \end{array} \right ] \left [ \begin{array}{cc} \mathbf{S}_{N/2} & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{N/2} \\ \end{array} \right ], \\ \mathbf{S}_2 = \left [ \begin{array}{cc} 1 & 1 \\ 1 & -1 \\ \end{array} \right ], \\ a_N = [\frac{3N^2}{4(N^2-1)}]^{1/2}, \\ b_N = [\frac{N^2-4}{4(N^2-1)}]^{1/2}. ASI=N 1SN,SN=1aN00bN00bN01aN000I(N/2)200I(N/2)21aN00bN00bN01aN000I(N/2)200I(N/2)2[SN/200SN/2],S2=[1111],aN=[4(N21)3N2]1/2,bN=[4(N21)N24]1/2.

标准正交性质是容易证明的, 需要特别注意的是, 改变换矩阵是非对称的, 所以逆变换是需要计算逆的 A S I − 1 A_{SI}^{-1} ASI1.

Haar Transform

Haar 是一种小波变换, 这里简单写一下.

s ( x , u ) = 1 N h u ( x / N ) , x = 0 , 1 , ⋯   , N − 1 , u = 2 p + q , h u ( x ) = { 1 u = 0   and   0 ≤ x < 1 , 2 p / 2 u > 0 and   q / 2 p < ( q + 0.5 ) / 2 p , − 2 p / 2 u > 0 and   ( q + 0.5 ) / 2 p < ( q + 1 ) / 2 p , 0 otherwise . s(x, u) = \frac{1}{\sqrt{N}} h_u(x / N), \quad x= 0,1,\cdots, N-1, \\ u = 2^p + q, \\ h_u(x) = \left \{ \begin{array}{ll} 1 & u=0 \: \text{and} \: 0 \le x < 1, \\ 2^{p/2} & u > 0 \text{and} \: q/2^p < (q + 0.5)/2^p, \\ -2^{p/2} & u > 0 \text{and} \: (q+0.5)/2^p < (q + 1)/2^p, \\ 0 & \text{otherwise}. \end{array} \right . s(x,u)=N 1hu(x/N),x=0,1,,N1,u=2p+q,hu(x)=12p/22p/20u=0and0x<1,u>0andq/2p<(q+0.5)/2p,u>0and(q+0.5)/2p<(q+1)/2p,otherwise.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值