- 博客(77)
- 资源 (2)
- 收藏
- 关注
原创 pip虚拟环境创建
pip虚拟环境创建使用pip(virtualenv)创建虚拟环境,相较于Anaconda更为轻量化,不会太影响服务器的速度。配置virtualenv:pip install virtualenv创建运行环境:virtualenv [虚拟环境名称]Linux环境下可能会出现:-bash: virtualenv: command not found解决方案:python -m virtualenv [虚拟环境名称]...
2022-02-06 11:31:36 3726
原创 Linux系统中,python需要import上一级目录文件的解决办法
Linux系统中,python需要import上一级目录文件的解决办法在import前添加代码:import sysimport ossys.path.append(os.path.abspath(os.path.join(__file__, "..", "..")))下面我们来对 sys.path.append(os.path.abspath(os.path.join(__file__, "..", "..")))这个命令进行解析:首先,(os.path.join(__file__, ".
2022-02-04 12:25:59 6257 4
转载 Depthwise卷积与Pointwise卷积
Depthwise卷积与Pointwise卷积Depthwise(DW)卷积与Pointwise(PW)卷积,合起来被称作Depthwise Separable Convolution(参见Google的Xception),该结构和常规卷积操作类似,可用来提取特征,但相比于常规卷积操作,其参数量和运算成本较低。所以在一些轻量级网络中会碰到这种结构如MobileNet。常规卷积操作对于一张5×5像素、三通道彩色输入图片(shape为5×5×3)。经过3×3卷积核的卷积层(假设输出通道数为4,则卷积核sh
2021-08-27 16:33:45 528
转载 pytorch中的contiguous()
pytorch中的contiguous()1 先看看官方中英文doc:torch.Tensor.contiguous (Python method, in torch.Tensor)torch.Tensor.is_contiguous (Python method, in torch.Tensor)1.1 contiguous() → TensorReturns a contiguous tensor containing the same data as self tensor. If sel
2021-08-25 14:25:57 1307
原创 RMS简介
RMS(均方根)简介 RMS就是均方根。在数据统计分析中,将所有值平方求和,求其均值,再开平方,就得到均方根值。在物理学中,我们常用均方根值来分析噪声。同时,它也是定义AC波的有效电压或电流的一种最普遍的数学方法。 在物理学中,除讨论过电流在一个周期上的平均值外,还常考虑电流有效值,周期性非恒定电流的有效值规定为:当在其一个周期内,在负载电阻R上消耗的平均功率等于取固定值的直流电流在R上消耗的功率时,称这个值为有效值。 均方根值是对信号波形或的平方求平均值,均方根值也称有效值,它可以指示信号发送
2021-08-03 10:35:45 16910
原创 vim在文件尾部插入内容
vim在文件尾部插入内容步骤打开文件:vim xxxx(文件名)跳到文本的最后一行:按G,即shift+g跳到该行的最后一个字符:shift+4($)o:在当前行下面插入一个新行O:在当前行上面插入一个新行esc 回到命令行:w保存:q退出补充上:k nk:向上移动n行 9999k或gg可以移到第一行 G移到最后一行下:j nj:向下移动n行左:h nh:向左移动n列右:l nl:向右移动n列...
2021-07-26 12:17:28 5113
转载 Pytorch自动混合精度(AMP)介绍与使用
Pytorch自动混合精度(AMP)介绍与使用背景:pytorch从1.6版本开始,已经内置了torch.cuda.amp,采用自动混合精度训练就不需要加载第三方NVIDIA的apex库了。本文主要从三个方面来介绍AMP:一.什么是AMP?二.为什么要使用AMP?三.如何使用AMP?四. 注意事项正文:一.什么是AMP?默认情况下,大多数深度学习框架都采用32位浮点算法进行训练。2017年,NVIDIA研究了一种用于混合精度训练的方法,该方法在训练网络时将单精度(FP32)与半精度(FP1
2021-07-25 10:51:31 10400
原创 Tacotron以及Tacotron2详解
Tacotron以及Tacotron2详解概述 Tacotron模型是首个真正意义上的端到端TTS深度神经网络模型。与传统语音合成相比,它没有复杂的语音学和声学特征模块,而是仅用<文本序列,语音声谱>配对数据集对神经网络进行训练,因此简化了很多流程。然后Tacotron使用Griffin-Lim算法对网络预测的幅度谱进行相位估计,再接一个短时傅里叶(Short-Time Fourier Transform,STFT)逆变换,实现端到端语音合成的功能。Tacotron的总体架构如
2021-06-30 11:31:20 9770 1
转载 工作中如何快速上手新项目
工作中如何快速上手新项目原文链接:工作中,如何快速上手一个新的项目?接手新项目时容易遇到的问题项目重点不明确 一开始面对各种需求 ,很容易陷入工作细节里不可自拔,有时候跑偏了也不自知。或者做一些挠痒痒的工作,没有触及核心问题,效率非常低下。工具使用不熟练 接手的新项目跟最近两年里做的项目很不同,使用的平台、工具也很不一样。熟悉这些平台工具的操作稍微需要花点儿时间。待看资料多而杂 新接手的项目是从别的团队转过来的,已经积累了很长时间,因此有很多背景资料需要熟悉
2021-05-23 16:29:49 471 1
转载 linux下安装ffmpeg的详细教程
linux下安装ffmpeg的详细教程一、centos linux下安装ffmpeg1、下载解压wget http://www.ffmpeg.org/releases/ffmpeg-3.1.tar.gztar -zxvf ffmpeg-3.1.tar.gz 2、 进入解压后目录,输入如下命令/usr/local/ffmpeg为自己指定的安装目录cd ffmpeg-3.1./configure --prefix=/usr/local/ffmpegmake && make in
2021-05-14 15:04:54 4291 1
原创 使用YIN算法提取音频的F0 Contours
使用YIN算法提取音频的F0 Contours的代码实现简介 F0 Contours, 全称为Fundamental Frequency Contours, 它与Pitch Contours所指相同。 基频提取(pitch estimation, pitch tracking)在声音处理中有广泛的应用。它最直接的应用,是用来识别音乐的旋律。它也可以用于语音处理,比如辅助带声调语言(如汉语)的语音识别,以及识别语音中的情感。 YIN算法是基频提取的算法之一。其名称取自「阴阳」之「阴」
2021-04-21 15:56:58 4194 2
原创 爬虫爬取微博用户粉丝及其关注
爬虫爬取微博用户粉丝及其关注前言 前段时间做了一个爬虫爬取微博用户粉丝及其关注的小项目,但忙着中期毕设答辩忘了加以记录了。对于动态网页的解决办法是使用selenium(上手比较快,而且抓包实在太麻烦了hhhhh我就还没学)。 关于selenium爬虫的学习:b站视频:【爬虫入门】selenium爬取动态网页,以及常见的问题视频的讲义:【爬虫入门】selenium爬取动态网页,以及常见的问题。项目github地址:https://github.com/hit-thusz-RookieCJ
2021-04-12 09:13:39 3255 1
转载 HFT算法
原文链接:https://www.zhihu.com/question/56347440/answer/151561680HFT HFT算法(Hidden Factors as Topics,是一个用评论文本来增强评分预测的算法) 目前存在的推荐算法,主要关注于利用用户的评分历史和隐式反馈信息训练模型,而忽略了一项常见的用户反馈——评论。用户对商品进行的评论,既能反映用户偏好,又能体现商品的某些属性,其中蕴含着大量有价值的信息。 将经典的rating-prediction mod
2021-04-11 20:59:58 1126
原创 Grid Search简介
Grid Search简介 跟人聊天时听到Grid Search,一开始还以为误以为是Beam Search了,后来查阅了一下才了解了它的意思。 Grid Search是一种调参的手段,即穷举,穷举所有的超参组合。 当你对决策树调参,如果只对一个超参优化,比如树的最大深度,尝试[3, 5, 7]。那么可以表示为 如果你还想对分裂标准进行调参,分别试试gini和entropy,那么就相当要对2×3=6组参数进行尝试。如下图 所以这就是为什么叫做gird search
2021-04-09 15:53:15 5269 3
原创 什么是F0 Contours
什么是F0 Contours F0 Contours, 全称为Fundamental Frequency Contours, 它与Pitch Contours所指相同。 音高(pitch)是声音的三大属性(音量、音高、音色)之一。除去个别极端情况,音高是由声音的基频(fundamental frequency, 简记为f0f_0f0)决定的,因此在文献中「音高」与「基频」两个词常常混用。由有规律的振动发出的声音,一般都会有基频,这样的声音包括语音中的元音与浊辅音,以及能演奏旋律的乐器发出的
2021-04-08 10:44:43 2031
转载 Visual Studio Code (vscode) 配置 C C++ 环境
Visual Studio Code (vscode) 配置 C / C++ 环境原文链接:https://www.cnblogs.com/bpf-1024/p/11597000.html昨天突发奇想,想使用vscode配置C++环境,因为不想下载 Dev OR codeblock,然后借助了很多网上教程,用了昨天整整一下午的时间最后终于成功了(哈哈哈哈哈……)。今天跟大家分享一下~~~因为还只是个编程小白,参考资料有点多 ↓ ↓ ↓官方文档 —— 参考配置过程CSDN原创文章
2021-04-07 21:09:55 199
转载 条件随机场(CRF)的理解
条件随机场(CRF)的理解原文链接:https://www.zhihu.com/question/35866596/answer/139485548理解条件随机场最好的办法就是用一个现实的例子来说明它。但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。于是乎,这件事只能由我这样的机器学习小白来干了。希望对其他的小白同学有所帮助。最近在刷李航的《统计学习方法》,翻阅目录,发现就后三章内容没有接触过,分别是EM算法、隐马尔可夫模型和条件随机场,其他内容在林轩田的两门公开课里
2021-04-07 15:43:51 338
原创 Attention机制学习笔记
Attention机制学习笔记Attention机制与Self-Attention机制的理解与区别:Attention机制与self-Attention机制常见的几种Attention方法以及对Attention计算方法的总结:https://www.zhihu.com/question/68482809/answer/1742071699Attention设计的套路:Attention Model(mechanism) 的 套路...
2021-04-07 08:50:38 273
原创 正交变换(傅里叶变换、Z变换)
正交变换(傅里叶变换、Z变换) 信号分解方法多种多样,我们可将信号分解为直流分量+交流分量、偶分量+奇分量、实部分量+虚部分量、脉冲分量、正交分量等多种形式。其中一个较复杂而又有重要意义的分解方法便是将信号分解为正交分量,我们把这个过程称作:信号的正交分解(正交变换)。 将信号正交分解之后,可以用于:方便处理便于抽取特性数据压缩 首先有一个问题——什么是正交? 在线性代数中我们了解过,向量的正交指的是a⃗⋅b⃗=0\vec{a}\cdot\vec{b} = 0a⋅b=0—
2021-04-02 08:33:34 12697 3
转载 Github自定义首页
Github自定义首页原文地址:https://zhuanlan.zhihu.com/p/180550738今天摸鱼之余,看到某个高中生的 GitHub 首页,让人眼前一亮Google 一番,原来 GitHub 在上个月就推出了自定义首页这个功能。并且结合 GitHub Action,可以有非常多的玩法,甚至可以显示 Twitter 、微博以及豆瓣的相关动态。下面是 Profile 的制作教程。创建 Repo首先新建一个仓库,仓库的名称需要和用户名一致。如果填写正确,会出现绿色的提示框,提示你
2021-03-30 10:59:59 1363 1
原创 深度学习中的优化方法(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam, Radam)
深度学习中的优化方法(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam, Radam)SGD,Adagrad,Adadelta,Adam,Adamax,Nadam: https://zhuanlan.zhihu.com/p/22252270提供了不需要可调参数的动态warmup的Radam: https://zhuanlan.zhihu.com/p/85911013...
2021-03-28 11:15:59 724
转载 阻塞非阻塞与同步异步的区别
阻塞非阻塞与同步异步的区别原文地址:https://www.zhihu.com/question/19732473/answer/241673170IO 概念区分四个相关概念:同步(Synchronous)异步( Asynchronous)阻塞( Blocking )非阻塞( Nonblocking)这四个概念的含义以及相互之间的区别与联系,并不如很多网络博客所写的那么简单, 通过举一些什么商店购物, 买书买报的例子就能讲清楚。进程间通信的同步/异步, 阻塞/非阻塞首先强调一点, 网
2021-03-27 09:31:40 151
转载 Benchmark和Baseline的含义与区别
Benchmark和Baseline的含义与区别原文地址:https://www.zhihu.com/question/28823373Benchmark和baseline都有性能比较的意思。先看看字典定义。benchmark:N-COUNT A benchmark is something whose quality or quantity is known and which can therefore be used as a standard with which other things
2021-03-14 18:25:41 810
转载 Resnet
Resnet原文地址:https://www.jianshu.com/p/93990a641066介绍终于可以说一下Resnet分类网络了,它差不多是当前应用最为广泛的CNN特征提取网络。它的提出始于2015年,作者中间有大名鼎鼎的三位人物He-Kaiming, Ren-Shaoqing, Sun-Jian。绝对是华人学者的骄傲啊。VGG网络试着探寻了一下深度学习网络的深度究竟可以深几许以能持续地提高分类准确率。我们的一般印象当中,深度学习愈是深(复杂,参数多)愈是有着更强的表达能力。凭着这一基本准
2021-03-14 17:02:50 362
原创 使用Markdown进行计划安排(打钩)
使用Markdown进行计划安排(打钩)前言在刚刚结束的实习中获得了一个经验——每天的计划最好都要明确地列出来,这样才不会遗漏事情,并且能够提高效率。因此,在这里主要介绍一个Markdown计划安排的小技巧,也就是如何打出打钩的格式(如下): 打钩的格式实现方式在你的markdown文件里打出:"- [ ] "需要注意的是,没有双引号,是’-’ + ‘空格’ + ‘[’ + ‘空格’ + ‘]’ + ‘空格’...
2021-03-07 08:45:39 11462
转载 Docker介绍和基础使用
Docker介绍和基础使用原文链接:https://xunmi.blog.csdn.net/article/details/108641842文章目录Docker简介和安装和基础配置Docker简介安装Docker Desktop换源Docker基础使用对Docker操作对镜像的基础操作获取当时所有镜像(docker images)拉去镜像(docker pull)删除镜像(docker rmi)加载镜像(docker run)使用交互式容器查看容器(
2021-01-22 11:25:59 131
转载 linux上安装Anaconda并创建一个虚拟环境
linux上安装Anaconda并创建一个虚拟环境原文链接:https://zhuanlan.zhihu.com/p/697997070、准备工作:用conda创建虚拟环境之前,需要先安装anaconda(此步是为了用下面的conda命令,不是为了用python)下载安装包(https://www.anaconda.com/distribution/),并放到服务器上,cd到服务器上安装包所在位置,用以下命令安装:bash Anaconda3-2019.03-Linux-x86_64.sh (An
2021-01-05 23:45:49 10681
原创 2020年过去了,我很怀念它
2020年过去了,我很怀念它 “2020年过去了,我很怀念它。” 这一年,在我的感知里,仿佛是被偷走了一半一样,还未细品,就已到年末。和朋友们聊天时也不禁说起:去年的12月31号仿佛就在昨天。当时我们所谈论的“武汉华南海鲜市场好像有肺炎,咱们最近少吃点海鲜了吧“,谁能料到竟在之后的一年里,深深地改变了整个世界的进程、改变了我们每一个人的生活。 所谓改变,大家往往会联想到戴口罩、禁行、封校、线上课程、线上考试等等,而对我而言,这一年来最深刻的改变,莫过于“线上”二字。 凑巧的是,这“线上”的一
2020-12-31 19:51:10 3321 14
转载 使用VScode连接远程服务器的配置方法
使用VScode连接远程服务器的配置方法原文链接:https://zhuanlan.zhihu.com/p/141205262VScode简介由微软推出的一款轻量级编辑器,拥有大量可拓展插件,可以根据自己的需求添加插件使编辑器的功能丰富起来。VScode和Sublime Text应该是最受欢迎的两款编辑器,本文将介绍在Windows下如何使用VScode连接远程linux服务器进行开发。为什么用VScode连接远程服务器的方法有很多,比如可以借助XShell、putty等软件使用ssh命令来登录远
2020-12-23 14:55:50 40178 7
原创 什么是one-shot learning
什么是one-shot learning Zero-shot learning 指的是我们之前没有这个类别的训练样本。但是我们可以学习到一个映射X->Y。如果这个映射足够好的话,我们就可以处理没有看到的类了。 比如,我们在训练时没有看见过狮子的图像,但是我们可以用这个映射得到狮子的特征。一个好的狮子特征,可能就和猫,老虎等等比较接近,和汽车,飞机比较远离。 One-shot learning 指的是我们在训练样本很少,甚至只有一个的情况下,依旧能做预测。 这是如何做到呢?可以在一个大数据
2020-11-27 08:16:39 5703
转载 Noteability的一些使用小技巧
Noteability的一些使用小技巧最近买了台ipad,主要用于做笔记看论文,因此最常打交道的就是Noteability,故在此分享一篇有关Noteability使用小技巧的文章。原文链接:https://www.zhihu.com/question/56107784/answer/74205125一.设置纸张 跳转页面点右上角那个螺丝刀一样的小工具可以设置纸张,可以设置成我们想要的颜色。怎么跳转页面呢?我们可以注意到右下角有个页码图标,点一下,输入想要去的页码就可以到想要跳转的页面了。
2020-11-26 10:00:49 17434
原创 Pytorch中BCELoss和BCEWithLogitsLoss的差别
Pytorch中BCELoss和BCEWithLogitsLoss的差别BCELoss在图片多标签分类时,如果3张图片分3类,会输出一个3*3的矩阵。先用Sigmoid给这些值都搞到0~1之间:假设Target是:BCELoss是−1n∑(yn×lnxn+(1−yn)×ln(1−xn))-\frac{1}{n} \sum(y_n \times lnx_n + (1-y_n) \times ln(1-x_n))−n1∑(yn×lnxn+(1−yn)×ln(1−xn)) ,其中y是ta
2020-11-25 11:02:58 855
转载 github下载慢问题解决办法
快速通道:添加链接描述不知道为什么,在学校时候不需要ladder就能够登录github;而到家之后就需要ladder了(有的朋友跟我不同地的还是能直接登录),我猜测可能是不同地方的“网上长城”严密程度不一样吧???这就带来一个问题,我用的hoxx开了会员(真的贼贵,打算换了)在github上下载也就只有200-300kB/s的速度,要下比较大的东西真的非常慢(还容易中间中断)同学分享了一篇介...
2020-11-25 10:41:30 210
转载 torch常用基础函数
torch原文地址:torch常用基础函数本笔记引用自PyTorch中文文档包torch包含了多维疑是的数据结构及基于其上的多种数学操作。1. 张量Tensorstorch.is_tensor(obj):如果obj是一个pytorch张量,则返回Truetorch.is_storage(obj):如果obj是一个pytorch storage对象,则返回Truetorch.numel(input):返回input张量中的元素个数。2. 创建操作torch.eye(n, m=Non
2020-11-12 21:29:26 4045
转载 Linux中shell语法和脚本编写
Linux中shell语法和脚本编写原文地址:学习shell的语法,及脚本编写其它相关辅助资料:编写shell脚本所需的语法和示例基础linux指令&简单的shell语法和脚本编写什么是shell脚本1、shell是一个命令行解释器,是解释执行的脚本语言,在shell中可以直接调用linux系统命令。为用户提供了一个向linux内核发送请求以便运行程序的界面系统级程序,用户可以用shell来启动、挂起、停止甚至是编写一些程序(说白了就是一个解释器,拿这个写内核就认识,它就将我们编写的程序
2020-11-09 19:44:41 1169
原创 Tacotron入门
Tacotron入门 Tacotron是TTS领域非常著名的一个模型(日常被当做对比参照物),正好毕设的Flowtron也是在它的基础上进行的改进,因此我也特地学习了一下Tacotron这个模型。 以下是相关的学习资料: Tacotron原论文:TACOTRON: TOWARDS END-TO-END SPEECH SYNTHESIS 知乎上一篇写得不错的Tacotron概述:Tacotron&Tacotron2——基于深度学习的端到端语音合成模型...
2020-11-09 10:00:53 727
转载 什么是多模态机器学习?
什么是多模态机器学习?原文地址:什么是多模态学习?首先,什么叫做模态(Modality)呢?每一种信息的来源或者形式,都可以称为一种模态。例如,人有触觉,听觉,视觉,嗅觉;信息的媒介,有语音、视频、文字等;多种多样的传感器,如雷达、红外、加速度计等。以上的每一种都可以称为一种模态。同时,模态也可以有非常广泛的定义,比如我们可以把两种不同的语言当做是两种模态,甚至在两种不同情况下采集到的数据集,亦可认为是两种模态。因此,多模态机器学习,英文全称 MultiModal Machine Learning
2020-10-30 19:35:58 2013
转载 Embedding的理解
Embedding的理解 我Embedding作用总是忘…因此在此记录辅助理解。 原文地址:怎么形象理解embedding这个概念?什么是Embedding? Embedding(嵌入)是拓扑学里面的词,在深度学习领域经常和Manifold(流形)搭配使用。 可以用几个例子来说明,比如三维空间的球体是一个二维流形嵌入在三维空间(2D manifold embedded in 3D space)。之所以说他是一个二维流形,是因为球上的任意一个点只需要用一个二维的经纬度来表达就可以了。
2020-10-28 22:36:01 1132
原创 Normalizing Flows学习
Normalizing Flows学习 毕设设计的论文中主要运用了Normalizing Flows这一方法。其作为一种有效的生成模型,虽然效果不错,但是没有VAE和GAN常见。我也是第一次了解到这个模型,因此查阅了一些资料对其进行学习。相关资料 下面是学习过程中查阅到的较为有效的学习资料,在此予以记录: 介绍相关前置知识与标准化流的定义和基础的:Normalizing Flows入门(上) 构建标准化流的一些方法:Normalizing Flows入门(中) ...
2020-10-27 15:25:49 3183 1
原创 Linux环境下kaldi的安装及测试
Linux环境下kaldi的安装及测试 Kaldi是当前最流行的开源语音识别工具(Toolkit),它使用WFST来实现解码算法。Kaldi的主要代码是C++编写,在此之上使用bash和python脚本做了一些工具。 在安装之前,需要注意的是,kaldi大小约为24GB,若你使用的是虚拟机且磁盘空间不够,可以参考这篇文章VMware虚拟机扩展Ubuntu系统磁盘空间,事先扩充磁盘空间。Linux环境配置安装前需要对你的Linux进行配置,你需要安装的软件有:apt-getsubversi
2020-10-23 09:10:09 2327 3
2020春《数据库系统》期末试题C-v1.2.pdf
2020-07-10
css229中文.rar
2020-05-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人