FAST LOW-RANK APPROXIMATION FOR COVARIANCE MATRICES

Belabbas M A, Wolfe P J. Fast Low-Rank Approximation for Covariance Matrices[C]. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2007: 293-296.

Nystorm method

和在WIKI看到的不是同一个东西?

假设 G ∈ R n × n G \in \mathbb{R}^{n \times n} GRn×n为对称正定矩阵。
G = [ A B T B C ] G = \left [ \begin{array}{ll} A & B^T \\ B & C \end{array} \right ] G=[ABBTC]
其中 A ∈ R k × k , k &lt; n A \in \mathbb{R}^{k \times k}, k&lt;n ARk×k,k<n
假设 G = U Λ U T G = U \Lambda U^T G=UΛUT, A = U A Λ A U A T A = U_A \Lambda_A U_A^T A=UAΛAUAT,令
U ~ = [ U A B U A Λ A − 1 ] \widetilde{U} = \left [ \begin{array}{c} U_A \\ BU_A \Lambda_A^{-1} \end{array} \right ] U =[UABUAΛA1]
则:
G ~ : = U ~ Λ A U ~ T = [ A B T B B A − 1 B T ] \widetilde{G} := \widetilde{U} \Lambda_A \widetilde{U}^T = \left [ \begin{array}{ll} A &amp; B^T \\ B &amp; BA^{-1}B^T \end{array} \right ] G :=U ΛAU T=[ABBTBA1BT]
易得:
∥ G − G ~ ∥ = ∥ C − B A − 1 B T ∥ \|G - \widetilde{G}\| = \|C-BA^{-1}B^T\| GG =CBA1BT

再玩一下,令:
G = [ A 1 A 2 T A 3 T A 2 M B T A 3 B C ] G = \left [ \begin{array}{lll} A_1 &amp; A_2^T &amp; A_3^T \\ A_2 &amp; M &amp; B^T \\ A_3 &amp; B &amp; C \end{array} \right ] G=A1A2A3A2TMBA3TBTC
M = U M Λ M U M T M = U_M \Lambda_M U_M^T M=UMΛMUMT.
再令
U ~ : = [ A 2 T U M Λ M − 1 U M B U M Λ M − 1 ] \widetilde{U} := \left [ \begin{array}{c} A_2^TU_M \Lambda_M^{-1} \\ U_M \\ B U_M \Lambda_M^{-1} \end{array} \right ] U :=A2TUMΛM1UMBUMΛM1
则:
G ~ : = U ~ Λ M U ~ T = [ A 2 T M − 1 A 2 A 2 T A 2 T M − 1 B T A 2 M B T B M − 1 A 2 B B M − 1 B T ] \widetilde{G} := \widetilde{U} \Lambda_M \widetilde{U}^T = \left [ \begin{array}{ccc} A_2^T M^{-1} A_2 &amp; A_2^T &amp; A_2^T M^{-1} B^T \\ A_2 &amp; M &amp; B^T \\ BM^{-1}A_2 &amp; B &amp; BM^{-1} B^T \end{array} \right ] G :=U ΛMU T=A2TM1A2A2BM1A2A2TMBA2TM1BTBTBM1BT
这个阵型还蛮酷的。

低秩逼近

先来介绍一个性质: F ( F T F ) − 1 / 2 F(F^TF)^{-1/2} F(FTF)1/2列正交(当然 F T F F^TF FTF得可逆)。
( F ( F T F ) − 1 / 2 ) T F ( F T F ) − 1 / 2 = ( F T F ) − 1 / 2 F T F ( F T F ) − 1 / 2 = I (F(F^TF)^{-1/2})^TF(F^TF)^{-1/2} = (F^TF)^{-1/2}F^TF(F^TF)^{-1/2} = I (F(FTF)1/2)TF(FTF)1/2=(FTF)1/2FTF(FTF)1/2=I
实际上,如果 F T F = V Λ V T F^TF = V\Lambda V^T FTF=VΛVT,那么 F V k Λ k − 1 / 2 FV_k \Lambda_k^{-1/2} FVkΛk1/2列正交。
所以,我们可以让 F F F的列为 G G G中某些列的组合,再让 P k : = F V k Λ k − 1 / 2 P_k := FV_k \Lambda_k^{-1/2} Pk:=FVkΛk1/2,最后:
G ~ k : = P k P k T G P k P k T \widetilde{G}_k := P_kP_k^TGP_kP_k^T G k:=PkPkTGPkPkT
来作为 G G G的一个近似。
在这里插入图片描述

矩阵乘法的逼近

如果我们能够令 ∥ G G T − F F T ∥ \|GG^T-FF^T\| GGTFFT尽可能小,那么 P k P k T G P_kP_k^TG PkPkTG就越有可能成为一个好的逼近,这需要利用矩阵乘法的逼近。
对于矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} ARm×n B ∈ R n × p B \in \mathbb{R}^{n \times p} BRn×p,得:
A B = ∑ i = 1 n A i B i AB = \sum_{i=1}^n A_iB^i AB=i=1nAiBi
其中 A i A_i Ai A A A的第i列, B i B^i Bi B B B的第i行。
论文举了一个例子:
如果 n = 2 n=2 n=2,且 A 2 = α A 1 A_2 = \sqrt{\alpha} A_1 A2=α A1, B = A T B=A^T B=AT
那么 A B = ( 1 + α ) A 1 A 1 T AB = (1+\alpha)A_1A_1^T AB=(1+α)A1A1T。这意味着,我们只需通过 A A A的第一列就能恢复 A B AB AB
所以接下来的问题是:

  • 如何选择行或者列
  • 如何调整它们的大小(乘个系数)

作者说,有一个神谕说列和行应该为 S ⊂ { 1 , … , n } S \subset \{1, \ldots, n\} S{1,,n},不失一般性,假设其为 S = { 1 , … , k } S = \{1, \ldots, k\} S={1,,k}。下面的定理给出了权重的选择:
在这里插入图片描述
在这里插入图片描述

所以我们要挑选 S S S,使得 Z Z Z的对角线元素尽可能小,这意味着,我们要挑选这样的 S S S,使得 &lt; A i , A i &gt; &lt; B i , B i &gt; &lt;A_i, A_i&gt;&lt;B^i, B^i&gt; <Ai,Ai><Bi,Bi>最大。
于是有了下面的俩个算法,分别针对矩阵乘法和矩阵逼近的:
在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值