Matrix Completion with Noise

Candes E J, Plan Y. Matrix Completion With Noise[J]. arXiv: Information Theory, 2010, 98(6): 925-936.

这篇文章,同一个人(团队?)写的,遗憾的是,没怎么看懂。怎么说呢,里面的关于对偶的性质实在不知道从何入手,但想来还是得记一笔。

这篇文章,讨论的是这样的一个问题,有一个矩阵 M ∈ R n 1 × n 2 M \in \mathbb{R}^{n_1 \times n_2} MRn1×n2,但是因为种种原因,我们只能知晓其中的一部分元素即 P Ω ( M ) P_{\Omega}(M) PΩ(M),那么问题来了,有没有办法能够恢复 M M M呢,或者说在什么条件下我们能恢复 M M M呢(实际上,这个问题好像是作者前一篇论文已经给出了答案)?然后,又有新的困难,因为我们的观测是有误差的,也就是说我们观测到的实际上不是 P Ω ( M ) P_{\Omega}(M) PΩ(M),而是 P Ω ( M + Z ) P_{\Omega}(M+Z) PΩ(M+Z)
作者总拿Netflix举例子,类似地,我们可以用网易云来举例子(虽然估计网易云的推荐方法和这个并没有啥大关系)。

我们可以这么想, M M M的每一行是一个用户,每一列是一首歌,其中的每一个元素是该用户给这首歌打的分(当然,这个分可能是通过一些操作的判断的,比如收藏,评论,下载,是否跳过等等)。显然,一个用户不可能听过里面的所有的歌,一首歌也没法让所有人都听(打分),所以,我们所见识到的是 P Ω ( M ) P_{\Omega}(M) PΩ(M),一个稀疏的矩阵。然而,推荐歌曲,关注的就是那些用户没有听过的但可能被打高分的歌,所以我们要做的就是利用 P Ω ( M ) P_{\Omega}(M) PΩ(M)恢复出 M M M。听起来的确蛮好玩的。

然后问题是,恢复需要什么前提。很显然,如果一首歌没有被人听过,或者该用户没有听过任何歌,肯定没法把分数恢复出来,因为这跟瞎猜没分别,所以,假设就是 M M M低秩,但是每行每列不能全为零。

和之前一样,作者采用不连贯条件来描述:
在这里插入图片描述

恢复1

本来,是应该求解下述问题的:

在这里插入图片描述
但是,这个问题很难求解(NP-hard)。

然后 r a n k \mathrm{rank} rank的凸放松是 ∥ ⋅ ∥ ∗ \|\cdot\|_* 核范数,所以:

在这里插入图片描述

核范数与SDP

核范数与SDP

然后,作者指出,核范数可以通过对偶,转换成一个半正定规范问题(看这篇论文最大的收获吧)。

∥ X ∥ ∗ ≤ y ⇔ 存 在 对 称 矩 阵 W 1 , W 2 使 得 M : = [ W 1 X X T W 2 ] ⪰ 0 , T r W 1 + T r W 2 ≤ 2 y \|X\|_* \le y \Leftrightarrow 存在对称矩阵W_1,W_2 使得 M:= \left [ \begin{array}{cc} W_1 & X \\ X^T & W_2 \end{array} \right ] \succeq 0, \mathrm{Tr} W_1 + \mathrm{Tr} W_2 \le 2y XyW1W2使M:=[W1XTXW2]0,TrW1+TrW22y
先来前推后,只要构造出这么一个 W 1 W_1 W1就可以了。假设 X = U Σ V T , Σ ∈ R r × r X = U\Sigma V^T, \Sigma \in \mathbb{R}^{r \times r} X=UΣVT,ΣRr×r W 1 = U Σ U T , W 2 = V Σ V T W_1 = U\Sigma U^T,W_2=V\Sigma V^T W1=UΣUT,W2=VΣVT。那么, T r W 1 + T r W 2 ≤ 2 y \mathrm{Tr} W_1 + \mathrm{Tr} W_2 \le 2y TrW1+TrW22y容易证明,第一个条件这么来玩:
[ z 1 T , z 2 T ] [ W 1 X X T W 2 ] [ z 1 z 2 ] [z_1^T, z_2^T] \left [ \begin{array}{cc} W_1 & X \\ X^T & W_2 \end{array} \right ] \left [ \begin{array}{c} z_1\\ z_2 \end{array} \right ] [z1T,z2T][W1XTXW2][z1z2]
再令 a = U T z 1 , b = V T z 2 a = U^Tz_1, b = V^Tz_2 a=UTz1,b=VTz2,可得:
[ z 1 T , z 2 T ] [ W 1 X X T W 2 ] [ z 1 z 2 ] = ( a + b ) T Σ ( a + b ) ≥ 0 [z_1^T, z_2^T] \left [ \begin{array}{cc} W_1 & X \\ X^T & W_2 \end{array} \right ] \left [ \begin{array}{c} z_1\\ z_2 \end{array} \right ] = (a+b)^T \Sigma (a+b) \ge 0 [z1T,z2T][W1XTXW2][z1z2]=(a+b)TΣ(a+b)0
对于任意的 z 1 , z 2 z_1, z_2 z1,z2成立,所以半正定条件也得证了。

好了,现在来反推:
∥ X ∥ ∗ = sup ⁡ { T r ( X T W ) ∣ ∥ W ∥ ≤ 1 } \|X\|_* = \sup \{\mathrm{Tr}(X^TW)|\|W\|\le 1\} X=sup{Tr(XTW)W1},其中 ∥ ⋅ ∥ \|\cdot\| 表示谱范数。
注意 ∥ A ∥ ∗ ≤ T r ( A ) \|A\|_* \le \mathrm{Tr}(A) ATr(A),当 A A A为半正定矩阵的时候。
所以
∥ M ∥ ∗ ≤ T r ( M ) = T r ( W 1 + W 2 ) ≤ 2 y \|M\|_* \le \mathrm{Tr}(M)=\mathrm{Tr}(W_1+W_2)\le 2y MTr(M)=Tr(W1+W2)2y
∥ M ∥ ∗ = sup ⁡ { T r ( M T W ) ∣ ∥ W ∥ ≤ 1 } \|M\|_* = \sup \{\mathrm{Tr}(M^TW)|\|W\|\le 1\} M=sup{Tr(MTW)W1},所以
T r ( M T W ) ≤ 2 y \mathrm{Tr}(M^TW) \le 2y Tr(MTW)2y

N : = [ U T 0 0 V T ] M [ 0 I n 1 × n 1 I n 2 × n 2 0 ] [ V 0 0 U ] = [ Σ U T W 1 U V T W 2 V Σ ] N := \left [ \begin{array}{cc} U^T & 0 \\ 0 & V^T \end{array} \right ] M \left [ \begin{array}{cc} 0 & I_{n_1 \times n_1} \\ I_{n_2 \times n_2} & 0 \end{array} \right ] \left [ \begin{array}{cc} V & 0\\ 0 & U \end{array} \right ] = \left [ \begin{array}{cc} \Sigma & U^TW_1U \\ V^TW_2V & \Sigma \end{array} \right ] N:=[UT00VT]M[0In2×n2In1×n10][V00U]=[ΣVTW2VUTW1UΣ]

W = [ 0 I n 1 × n 1 I n 2 × n 2 0 ] [ V 0 0 U ] [ U T 0 0 V T ] = [ 0 U V T V U T 0 ] W = \left [ \begin{array}{cc} 0 & I_{n_1 \times n_1} \\ I_{n_2 \times n_2} & 0 \end{array} \right ] \left [ \begin{array}{cc} V & 0\\ 0 & U \end{array} \right ] \left [ \begin{array}{cc} U^T & 0 \\ 0 & V^T \end{array} \right ] = \left [ \begin{array}{cc} 0 & UV^T \\ VU^T & 0 \end{array} \right ] W=[0In2×n2In1×n10][V00U][UT00VT]=[0VUTUVT0]
容易证明 ∥ W ∥ ≤ 1 \|W\| \le 1 W1,所以 T r ( N ) = T r ( M T W ) = 2 ∥ X ∥ ∗ ≤ 2 y \mathrm{Tr}(N) = \mathrm{Tr}(M^TW)=2\|X\|_*\le 2y Tr(N)=Tr(MTW)=2X2y,故 ∥ X ∥ ∗ ≤ y \|X\|_* \le y Xy得证。但愿没出错。。。

然后,论文就给出了第一个定理,关于恢复的:
在这里插入图片描述
这个结果貌似是之前的工作,,满足一定条件, M M M就会有很大概率被恢复。

然后呢,论文又提了以下加强版的不连贯条件:
在这里插入图片描述
然后有相应的定理2:

在这里插入图片描述

然后跳过。

稳定恢复

用户的评分是不一定正确,不同的场合,不同的天气可能就会给出不同的分数,如果是机器推断的分数那就更是如此了。所以,我们观测的部分数据实际上不一定是 P Ω ( M ) P_\Omega (M) PΩ(M),而是 P Ω ( Y ) = P Ω ( M + Z ) P_\Omega (Y) = P_\Omega (M+Z) PΩ(Y)=PΩ(M+Z),其中 Z Z Z是类似噪声的存在。
假设, ∥ P Ω ( Z ) ∥ F ≤ δ \|P_{\Omega}(Z)\|_F \le \delta PΩ(Z)Fδ,求解下列问题:
min ⁡ ∥ X ∥ ∗ s . t . ∥ P Ω ( X − Y ) ∥ F ≤ δ \begin{array}{cc} \min & \|X\|_* \\ s.t. & \|P_{\Omega}(X-Y)\|_F \le \delta \end{array} mins.t.XPΩ(XY)Fδ
这个问题同样可以作为SDP求解,假设其解为 M ^ \hat{M} M^。有如下定理:

在这里插入图片描述
但是问题是,我们从何知道 δ \delta δ呢?而在实际操作的时候,作者是求解下述问题:

min ⁡ 1 2 ∥ P Ω ( X − Y ) ∥ F 2 + μ ∥ X ∥ ∗ \min \quad \frac{1}{2} \|P_{\Omega} (X-Y)\|_F^2 + \mu \|X\|_* min21PΩ(XY)F2+μX

作者说,这个问题是上面那个问题的对偶结果,饶了我吧,有点像,但是整不出来。然后,不同的情况,作者也给出了 μ \mu μ的一些选择。

作者还拿上面的结果和下面的神谕问题进行了比较:
在这里插入图片描述
这个神谕,就是指,我们已经知道 X ∈ T X \in T XT里面了,然后用了对偶还是共轭算子?晕了已经。就这样吧,再看我就得吐了。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值