Keras深度学习框架基础第二讲:层接口(layers API)“层激活函数”

1、激活函数的使用方法

激活函数(Activations)的使用有两种方式:一种是通过激活层(Activation layer)来使用,另一种是通过所有前向传播层(forward layers)所支持的activation参数来使用。

Activation layer:在神经网络中,激活层是一个独立的层,它不包含权重或偏置项,只是简单地对其输入应用激活函数。当你想要明确地在一个特定位置插入一个激活函数时,可以使用激活层。
activation argument:许多神经网络库(如TensorFlow、Keras等)允许你在定义层(如Dense层、Conv2D层等)时通过activation参数直接指定激活函数。这样做的好处是代码更加简洁,不需要显式地添加激活层。

model.add(layers.Dense(64, activation=activations.relu))

代码也可以编写为如下的式样

from keras import layers
from keras import activations

model.add(layers.Dense(64))
model.add(layers.Activation(activations.relu))

2、激活函数详解

2.1 relu函数

keras.activations.relu(x, negative_slope=0.0, max_value=None, threshold=0.0)

该函数应用了修正线性单元(Rectified Linear Unit,简称ReLU)激活函数。

在默认参数下,这将返回标准的ReLU激活函数:max(x, 0),这是输入张量和0的元素级最大值。

修改默认参数允许您使用非零阈值、改变激活的最大值,以及对于低于阈值的值使用输入的非零倍数。

>>> x = [-10, -5, 0.0, 5, 10]
>>> keras.activations.relu(x)
[ 0.,  0.,  0.,  5.,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MUKAMO

你的鼓励是我们创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值