1、激活函数的使用方法
激活函数(Activations)的使用有两种方式:一种是通过激活层(Activation layer)来使用,另一种是通过所有前向传播层(forward layers)所支持的activation参数来使用。
Activation layer:在神经网络中,激活层是一个独立的层,它不包含权重或偏置项,只是简单地对其输入应用激活函数。当你想要明确地在一个特定位置插入一个激活函数时,可以使用激活层。
activation argument:许多神经网络库(如TensorFlow、Keras等)允许你在定义层(如Dense层、Conv2D层等)时通过activation参数直接指定激活函数。这样做的好处是代码更加简洁,不需要显式地添加激活层。
model.add(layers.Dense(64, activation=activations.relu))
代码也可以编写为如下的式样
from keras import layers
from keras import activations
model.add(layers.Dense(64))
model.add(layers.Activation(activations.relu))
2、激活函数详解
2.1 relu函数
keras.activations.relu(x, negative_slope=0.0, max_value=None, threshold=0.0)
该函数应用了修正线性单元(Rectified Linear Unit,简称ReLU)激活函数。
在默认参数下,这将返回标准的ReLU激活函数:max(x, 0)
,这是输入张量和0的元素级最大值。
修改默认参数允许您使用非零阈值、改变激活的最大值,以及对于低于阈值的值使用输入的非零倍数。
>>> x = [-10, -5, 0.0, 5, 10]
>>> keras.activations.relu(x)
[ 0., 0., 0., 5.,