1. 回归模型定义
最简单的回归模型是具有单一预测变量的线性模型,其基本形式如下:
y=a+bx+ϵy = a + bx + \epsilony=a+bx+ϵ
其中,aaa 和 bbb 被称为模型的系数或更一般地,模型的参数。ϵ\epsilonϵ 代表误差项,即模型未能解释的变异性。
简单的线性模型可以通过多种方式进行扩展,以适应更复杂的数据结构和关系,包括但不限于以下几种:
- 包含额外的预测变量:
当模型中包含多个预测变量时,其形式变为:
y=β0+β1x1+β2x2+⋯+βkxk+ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilony=β0+β1x1+β2x2+⋯+βkxk+ϵ
这可以进一步以向量-矩阵表示法写为:
y=Xβ+ϵ\mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{\epsilon} y=Xβ+ϵ
其中,y\mathbf{y}y

最低0.47元/天 解锁文章
236

被折叠的 条评论
为什么被折叠?



