【深度学习】图形模型基础(5):线性回归模型第一部分:认识线性回归模型

1. 回归模型定义

最简单的回归模型是具有单一预测变量的线性模型,其基本形式如下:

y=a+bx+ϵy = a + bx + \epsilony=a+bx+ϵ

其中,aaabbb 被称为模型的系数或更一般地,模型的参数。ϵ\epsilonϵ 代表误差项,即模型未能解释的变异性。

简单的线性模型可以通过多种方式进行扩展,以适应更复杂的数据结构和关系,包括但不限于以下几种:

  • 包含额外的预测变量
    当模型中包含多个预测变量时,其形式变为:

y=β0+β1x1+β2x2+⋯+βkxk+ϵ y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilony=β0+β1x1+β2x2++βkxk+ϵ

这可以进一步以向量-矩阵表示法写为:

y=Xβ+ϵ\mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{\epsilon} y=Xβ+ϵ

其中,y\mathbf{y}y

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MUKAMO

你的鼓励是我们创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值