朴素贝叶斯法(一)——原理篇

本文介绍了朴素贝叶斯法的基本原理,包括贝叶斯定理、联合概率模型和分类策略。详细阐述了极大似然估计和贝叶斯估计两种概率估计方法,并给出了一步一步的算法流程。此外,通过实例解析了如何计算先验概率和条件概率,最后提到了朴素贝叶斯法在实际应用中的代码实现。
摘要由CSDN通过智能技术生成

生成模型

一、原理

模型
朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测。
根据贝叶斯定理,得后验概率
(*) P ( Y ∣ X ) = P ( X , Y ) P ( X ) = P ( Y ) P ( X ∣ Y ) ∑ Y P ( Y ) P ( X ∣ Y ) P(Y|X)=\frac{P(X,Y)}{P(X)}=\frac{P(Y)P(X|Y)}{\sum\limits_YP(Y)P(X|Y)}\tag{*} P(YX)=P(X)P(X,Y)=YP(Y)P(XY)P(Y)P(XY)(*)

(A) P ( Y = c k ∣ X = x ) = P ( Y = c k ) P ( X = x ∣ Y = c k ) ∑ k P ( Y = c k ) P ( X = x ∣ Y = c k ) P(Y=c_k|X=x)=\frac{P(Y=c_k)P(X=x|Y=c_k)}{\sum\limits_kP(Y=c_k)P(X=x|Y=c_k)}\tag{A} P(Y=ckX=x)=kP(Y=ck)P(X=xY=ck)P(Y=ck)P(X=xY=ck)(A)

联合概率分布: P ( X , Y ) = P ( Y ) P ( X ∣ Y ) P(X,Y)=P(Y)P(X|Y) P(X,Y)=P(Y)P(XY),其由先验概率与条件概率计算得来。
先验概率分布: P ( Y = c k ) P(Y=c_k) P(Y=ck)
条件概率分布: P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋅ ⋅ ⋅ , X ( n ) = x ( n ) ∣ Y = c k ) P(X=x|Y=c_k)=P(X^{(1)}=x^{(1)},···,X^{(n)}=x^{(n)}|Y=c_k) P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)
根据朴素贝叶斯法的条件独立性假设,将条件概率的计算公式简化为 P ( X = x ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P(X=x|Y=c_k)=\prod\limits_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_k) P(X=xY=ck)=j=1nP(X(j)=x(j)Y=ck)
将此式代入式 ( A ) (A) (A),得
(B) P ( Y = c k ∣ X = x ) = P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) ∑ k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P(Y=c_k|X=x)=\frac{P(Y=c_k)\prod\limits_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_k)}{\sum\limits_kP(Y=c_k)\prod\limits_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_k)}\tag{B} P(Y=ckX=

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值