bzoj 3143(期望与DP+高斯消元)

8 篇文章 0 订阅
4 篇文章 0 订阅

3143: [Hnoi2013]游走

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 2156   Solved: 951
[ Submit][ Status][ Discuss]

Description

一个无向连通图,顶点从1编号到N,边从1编号到M。 
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

Input

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数。

Sample Input

3 3
2 3
1 2
1 3

Sample Output

3.333


解题思路:首先肯定是期望次数最少的编号最大,然后就是求每条
边的期望次数,可以转化到求点的期望次数。高斯消元。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
int n,m,len;
long double f[510][510];
int to[500000],next[500000],h[500000];
int xg[500000],yg[500000];
long double zhi[500000]; 
long double du[500000]; 
 
inline int read()
{
char y; int x=0,f=1; y=getchar();
while (y<'0' || y>'9') {if (y=='-') f=-1; y=getchar();}
while (y>='0' && y<='9') {x=x*10+int(y)-48; y=getchar();}
return x*f;
}


void insert(int x,int y)
 {
  ++len; to[len]=y; next[len]=h[x]; h[x]=len;
 }


void work()
 {
  for (int i=1;i<=n;++i)
  {
  double ogg=f[i][i];
  for (int j=i;j<=n+1;++j)
  f[i][j]/=ogg;
  for (int j=i+1;j<=n;++j)
  {
    ogg=f[j][i];
    for (int k=i;k<=n+1;++k)
     {
       f[j][k]-=ogg*f[i][k];
}
}
 }
for (int i=n-1;i>=1;--i)
{
for (int j=i+1;j<=n;++j)
{
double ogg=f[i][j];
f[i][n+1]-=ogg*f[j][n+1];
f[i][j]=0;
 }
}
 }


int main()
{
n=read(); m=read();
for (int i=1;i<=m;++i)
{
int x,y; x=read(); y=read(); ++du[x]; ++du[y];
insert(x,y); insert(y,x);
xg[i]=x; yg[i]=y;
}
for (int i=1;i<=n;++i)
{
int u=h[i];
f[i][i]=1;
if (i==1) f[i][n+1]=1;
        while (u!=0)
         {
          if (to[u]!=n)
           {
            f[i][to[u]]=-1/du[to[u]];
  }
          u=next[u];
}
     }
    work();
    f[n][n+1]=0;
for (int i=1;i<=m;++i)
{
int x=xg[i]; int y=yg[i];
zhi[i]=f[x][n+1]/du[x]+f[y][n+1]/du[y];
}
long double ans=0;
sort(zhi+1,zhi+m+1);
for (int i=m;i>=1;--i)
{
ans+=zhi[i]*(m-i+1);
}
printf("%.3Lf",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值