高斯消元小结

本文主要介绍了高斯消元法在解决线性方程组中的应用,包括整数系数和实数系数方程、异或方程、同余方程以及矩阵求逆等问题。通过实例解析了如何利用高斯消元进行求解,并提供了模板和典型例题,如开关问题、概率问题和图论问题,展示了高斯消元在不同场景下的转换和运用。
摘要由CSDN通过智能技术生成

高斯消元

1.高斯消元

1.1 基本操作

模拟线性代数的运算。

处理的问题一般有如下几种:

  1. 系数和解集全部为整数
  2. 系数和解集中存在实数
  3. 解异或方程组
  4. 解同余方程组

同时,高斯消元还可以处理求矩阵逆的问题:假设要求矩阵A的逆,那么在矩阵A的右侧加入单位矩阵E,变为[AE],然后进行行列变化,当A变为E时,E就变为A的逆 A − 1 A^{-1} A1

1.2 定义概念

未知数:解方程时不确定的未知数

自由元:人为确定的未知数中的一部分,一旦确定了自由元就能够确定其他的未知数

自由元 <= 未知数

2.模板

2.1 解累加方程

{ A 11 X 1 + A 12 X 2 + . . . + A 1 n X n = B 1 A 21 X 1 + A 22 X 2 + . . . + A 2 n X n = B 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A m 1 X 1 + A m 2 X 2 + . . . + A m n X n = B m \begin{cases} A_{11}X_1+A_{12}X_2+...+A_{1n}X_n=B_1 \\ A_{21}X_1+A_{22}X_2+...+A_{2n}X_n=B_2 \\ ...........................................................\\ A_{m1}X_1+A_{m2}X_2+...+A_{mn}X_n=B_m \end{cases} A11X1+A12X2+...+A1nXn=B1A21X1+A22X2+...+A2nXn=B2...........................................................Am1X1+Am2X2+...+AmnXn=Bm

2.1.1 整数系数
#include <bits/stdc++.h>

using namespace std;

const int MAXN = 105;
int equ, var;  // 有equ个方程,var个变元。增广阵行数为equ, 分别为0到equ - 1,列数为var + 1,分别为0到var.
int a[MAXN][MAXN], x[MAXN];  // a存储增广矩阵, x存储解集
bool free_x[MAXN];  // 这里标定的是未知数
int free_num;  // 未知数数目

int gcd(int a, int b) {
    return b ? gcd(b, a % b) : a; }
inline int lcm(int a, int b) {
    return a * b / gcd(a, b); }

// 高斯消元法解方程组(Gauss-Jordane limination).
// (-2表示有浮点数解,但无整数解,-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
int Gauss(void) {
   
    int i, j, k;
    int max_r;  // 当前这列绝对值最大的行.
    int col;    // 当前处理的列.
    int ta, tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;
    // 转换为阶梯阵.
    col = 0;                                         // 当前处理的列.
    for (k = 0; k < equ && col < var; k++, col++) {
     // 枚举当前处理的行.
        // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r = k;
        for (i = k + 1; i < equ; i++) {
   
            if (abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
        }
        if (max_r != k) {
     // 与第k行交换.
            for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
        }
        if (a[k][col] == 0) {
     // 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for (i = k + 1; i < equ; i++) {
     // 枚举要删去的行.
            if (a[i][col] != 0) {
   
                LCM = lcm(abs(a[i][col]), abs(a[k][col]));
                ta = LCM / abs(a[i][col]), tb = LCM / abs(a[k][col]);
                if (a[i][col] * a[k][col] < 0) tb = -tb;  // 异号的情况是两个数相加.
                for (j = col; j < var + 1; j++) a[i][j] = a[i][j] * ta - a[k][j] * tb;
            }
        }
    }
    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++) {
     // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵. 且出现的行数即为自由变元的个数.
    if (k < var) {
   
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--) {
   
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行. 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0;  // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++) {
   
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue;  // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++) {
   
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index];  // 求出该变元.
            free_x[free_index] = 0;                   // 该变元是确定的.
        }
        return var - k;  // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--) {
   
        temp = a[i][var];
        for (j = i + 1; j < var; j++) {
   
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        }
        if (temp % a[i][i] != 0) return -2;  // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}

void Debug(int equ, int var) {
   
    int i, j;
    for (i = 0; i < equ; i++) {
   
        for (j = 0; j < var + 1; j++) 
            cout << a[i][j] << " ";
        cout << endl;
    }
    cout << endl;
}

int main(void) {
   
    int i, j;
    while (scanf("%d %d", &equ, &var) != EOF) {
   
        memset(a, 0, sizeof(a));
        memset(x, 0, sizeof(x));
        memset(free_x, 1, sizeof(free_x));  // 一开始全是不确定的变元

        for (i = 0; i < equ; i++)  //构造增广矩阵
            for (j = 0; j < var + 1; j++) scanf("%d", &a[i][j]);  // 0 ~ var - 1列为系数矩阵, var列为答案矩阵
        free_num = Gauss();
        if (free_num == -1) printf("无解!\n");
        else if (free_num == -2) printf("有浮点数解,无整数解!\n");
        else if (free_num > 0) {
   
            printf("无穷多解! 未知数个数为%d\n", free_num);
            for (i = 0; i < var; i++) {
   
                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        } else {
   
            for (i = 0; i < var; i++) printf("x%d: %d\n", i + 1, x[i]);
        }
        printf("\n");
    }
    return 0;
}
2.1.2 实数系数

1.kuangbin版本

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1002;
const double eps = 1e-8;
double a[maxn][maxn];
int equ, var;    // equ个方程,var个变量
double x[maxn];  //解集
bool free_x[maxn];  // 标定未知数
int n;

int sgn(double x) {
    return (x > eps) - (x < -eps); }
// 高斯消元法解方程组(Gauss-Jordan elimination).-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数
int gauss() {
   
    int i, j, k;
    int max_r;  // 当前这列绝对值最大的行.
    int col;    // 当前处理的列.
    double temp;
    int free_x_num;
    int free_index;
    // 转换为阶梯阵.
    col = 0;  // 当前处理的列.
    memset(free_x, true, sizeof(free_x));
    for (k = 0; k < equ && col < var; k++, col++) {
   
        max_r = k;
        for (i = k + 1; i < equ; i++) {
   
            if (sgn(fabs(a[i][col]) - fabs(a[max_r][col])) > 0) max_r = i;
        }
        if (max_r != k) {
     // 与第k行交换.
            for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
        }
        if (sgn(a[k][col]) == 0) {
     // 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for (i = k + 1; i < equ; i++) {
     // 枚举要删去的行.
            if (sgn(a[i][col]) != 0) {
   
                temp = a[i][col] / a[k][col];
                for (j = col; j < var + 1; j++) {
   
                    a[i][j] = a[i][j] - a[k][j] * temp;
                }
            }
        }
    }

    for (i = k; i < equ; i++) {
   
        if (sgn(a[i][col]) != 0) return -1;
    }
    if (k < var) {
   
        for (i = k - 1; i >= 0; i--) {
   
            free_x_num = 0;
            for (j = 0; j < var; j++) {
   
                if (sgn(a[i][j]) != 0 && free_x[j])
                    free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue;
            temp = a[i][var];
            for (j = 0; j < var; j++) {
   
                if (sgn(a[i][j]) != 0 && j != free_index)
                    temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index];
            free_x[free_index] = 0;
        }
        return var - k;
    }

    for (i = var - 1; i >= 0; i--) {
   
        temp = a[i][var];
        for (j = i + 1; j < var; j++) {
   
            if (sgn(a[i][j]) != 0) temp -= a[i][j] * x[j];
        }
        x[i] = temp / a[i][i];
    }
    return 0;
}

int main() {
   
    cin >> equ;
    for (int i = 0; i < equ; i++)
        for (int j = 0; j < equ + 1; j++) cin >> a[i][j];
    var = equ;
    int t = gauss();
    if (t == -1) {
   
        puts("No solution");
    } else if (t == 0) {
   
        for (int i = 0; i < var; i++) printf("%.2lf\n", x[i]);
    }
    else puts("Infinite group solutions");
    return 0;
}

2.yxc版本

#include <bits/stdc++.h>

using namespace std;

const int N = 110;
const double eps = 1e-6;

int n;
double a[N][N];  // 存放参数

// 求解线性方程组
int gauss() {
   
    int c, r;
    for (c = 0, r = 0; c < n; c++) {
   
        int t = r;
        for (int i = r; i < n; i++)
            if (fabs(a[i][c]) > fabs(a[t][c])) t = i;

        if (fabs(a[t][c]) < eps) continue;

        for (int i = c; i < n + 1; i++) swap(a[t][i], a[r][i]);
        for (int i = n; i >= c; i--) a[r][i] /= a[r][c];

        for (int i = r + 1; i < n; i++)
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j--) a[i][j] -= a[r][j] * a[i][c];
        r++;
    }
    if (r < n) {
   
        for (int i = r; i < n; i++)
            if (fabs(a[i][n]) > eps) return 2;
        return 1;
    }
    for (int i = n - 1; i >= 0; i--)
        for (int j = i + 1; j < n; j++) a[i][n] -= a[j][n] * a[i][j];

    return 0;
}

int main() {
   
    // 最后一列存放b,前n列存放a
    cin >> n;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n + 1; j++) cin >> a[i][j];
    int t = gauss();
    // 判断答案是否有解
    if (t == 0) {
   
        for (int i = 0; i < n; i++) printf("%.2lf\n", a[i][n]);  // 最后一列存放答案
    } else if (t == 1)
        puts("Infinite group solutions");
    else
        puts("No solution");

    return 0;
}

2.2 解异或方程

{ A 11 X 1   x o r   A 12 X 2   x o r   . . .   x o r   A 1 n X n = B 1 A 21 X 1   x o r   A 22 X 2   x o r   . . .   x o r   A 2 n X n = B 2 . . . . . . . . . . . . . . . . . . . . . . . . . A m 1 X 1  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值