TensorFlow入门:各种函数中的shape参数

tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差。这个函数产生正太分布,均值和标准差自己设定。这是一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。和一般的正太分布的产生随机数据比起来,这个函数产生的随机数与均值的差距不会超过两倍的标准差,但是一般的别的函数是可能的。神经网络中的大多数的shape参数都是这种情况。shape参数形式如下:

def weight_variable(shape):
inital=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(inital)
#5*5:patch(卷积核大小)
#1:in_size(图像的厚度)
#32:out_size(图像的厚度)
#32也可以理解为卷积核的个数
W_conv1=weight_variable([5,5,1,32])

tf.constant(value,dtype=None,shape=None,name='Const',verify_shape=False):在这里引入张量的概念。

TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.

张量可以在图中的节点之间流通.

在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)

是张量维数的一个数量描述。

比如,下面的张量(使用Python中list定义的)就是2阶.

 t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.

而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.

数学实例Python 例子
0纯量 (只有大小)s = 483
1向量(大小和方向)v = [1.1, 2.2, 3.3]
2矩阵(数据表)m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
33阶张量 (数据立体)t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
nn阶 (自己想想看)....

形状

TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:

形状维数实例
0[ ]0-D一个 0维张量. 一个纯量.
1[D0]1-D一个1维张量的形式[5].
2[D0, D1]2-D一个2维张量的形式[3, 4].
3[D0, D1, D2]3-D一个3维张量的形式 [1, 4, 3].
n[D0, D1, ... Dn]n-D一个n维张量的形式 [D0, D1, ... Dn].

shape [2,3] 表示为数组的意思是第一维有两个元素,第二维有三个元素,如: [[1,2,3],[4,5,6]]

1. 

import tensorflow as tf  
a = tf.constant([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]],shape = [3,3])  
b = tf.initialize_all_variables()  
  
with tf.Session() as sess:  
    sess.run(b)  
    print(sess.run(a))  

输出为:

[[ 1.  2.  3.]  
 [ 4.  5.  6.]  
 [ 7.  8.  9.]]  

很好理解。

2.

import tensorflow as tf  
a = tf.constant([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]],shape = [1,3,3])  
b = tf.initialize_all_variables()  
  
with tf.Session() as sess:  
    sess.run(b)  
    print(sess.run(a))  

​​​​​​​输出为:

[[[ 1.  2.  3.]  
  [ 4.  5.  6.]  
  [ 7.  8.  9.]]]  

​​​​​​​也很好理解,在例1的外层加一个中括号就行。

3. 

import tensorflow as tf  
a = tf.constant([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]],shape = [1,3,3,1])  
b = tf.initialize_all_variables()  
  
with tf.Session() as sess:  
    sess.run(b)  
    print(sess.run(a))  

​​​​​​​输出为:

[[[[ 1.]  
   [ 2.]  
   [ 3.]]  
  
  [[ 4.]  
   [ 5.]  
   [ 6.]]  
  
  [[ 7.]  
   [ 8.]  
   [ 9.]]]]  

​​​​​​​第一次看到这个的时候很不理解,因为结果很奇怪,不直观,但是其实这也是一个 3 × 3 矩阵的表示,shape中有四个数字,

代表着输出的维数为4,在分割的过程中如果只剩一个数字,那么在这个数字外面加上一个中括号就充当了一维。

下面问题的输出应该猜到了吧。

a = tf.constant([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]],shape = [1,3,3,1,1])  

4.

import tensorflow as tf  
a = tf.constant([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]],shape = [1,3,3,2])  
b = tf.initialize_all_variables()  
  
with tf.Session() as sess:  
    sess.run(b)  
    print(sess.run(a))  

输出为:

 

[[[[ 1.  2.]  
   [ 3.  4.]  
   [ 5.  6.]]  
  
  [[ 7.  8.]  
   [ 9.  9.]  
   [ 9.  9.]]  
  
  [[ 9.  9.]  
   [ 9.  9.]  
   [ 9.  9.]]]]  

​​​​​​​有点惊讶吧。原因是这样的,shape中维数为4,至少有1 × 3 × 3 × 2 = 18个数字,如果所给参数中少于18个数字的话就用最后一个数字进行填充。

  • 7
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值