机器学习/深度学习入门:优化器原理与比较

梯度下降法(Gradient Descent) 梯度下降法是最基本的一类优化器,目前主要分为三种梯度下降法:标准梯度下降法(GD, Gradient Descent),随机梯度下降法(SGD, Stochastic Gradient Descent)及批量梯度下降法(BGD, Batch Gra...

2019-04-16 16:23:01

阅读数 29

评论数 0

数学:梯度的理解

方向导数的解释 函数 z=f(x,y) 表示空间曲面 S,则点 P(x0, y0,z0) 在 S 上,过点 P 和 P0 的 u 方向的垂直平面交 S 于曲线 C,f 沿方向 u 的变化率是 C 在点 P 的切线的斜率,观察下面动画: 方向导数和梯度的关系 当 u 与 ▽f 同方向时, ...

2019-04-16 11:21:45

阅读数 5

评论数 0

texlive2018和texstudio的安装及汉化教程

latex是编写论文的利器,尤其是公式的编辑是word等不可比的,且公式可以支持转换为Matgtype,十分方便且学习周期短。 下文是texlive2018和texstudio的安装教程: 安装包链接:https://pan.baidu.com/s/1LUTlXs5nhjI8Fvx5vbbyl...

2019-03-31 21:35:09

阅读数 38

评论数 0

机器学习/深度学习入门:CNN池化层

池化层也叫下采样层,对输入的特征图进行压缩,1.使特征图变小,简化网络计算复杂度;2.进行特征压缩,提取主要特征;3.降低过拟合,减小输出大小的结果,它同样也减少了后续层中的参数的数量。其具体操作与卷基层的操作基本相同,只不过下采样的卷积核为只取对应位置的最大值、平均值等(最大池化、平均池化),并...

2019-03-18 17:06:45

阅读数 38

评论数 0

帧差法,光流法和背景减法

概述 运动目标检测是指当监控场景中有活动目标时,采用图像分割的方法从背景图像中提取出目标的运动区域。运动目标检测技术是智能视频分析的基础,因为目标跟踪、行为理解等视频分析算法都是针对目标区域的像素点进行的,目标检测的结果直接决定着智能视觉监控系统的整体性能。 运动目标检测的方法有很多种。根...

2019-03-12 19:50:03

阅读数 44

评论数 0

机器学习/深度学习入门:准确率(查准率)、召回率(查全率)、F值和误识率(FAR)、拒识率(FRR)、ROC曲线

准确率(查准率)、召回率(查全率)、F值 正确率、召回率和F值是目标的重要评价指标。 正确率 = 正确识别的个体总数 / 识别出的个体总数 召回率 = 正确识别的个体总数 / 测试集中存在的个体总数 F值 = 正确率 * 召回率 * 2 / (正确率 + 召回率) 假设要识别照片中的狗的,...

2019-03-12 19:46:38

阅读数 144

评论数 0

numpy,tensorFlow.tensor,torch.tensor的shape以及相互转化

numpy numpy.ndarray 对于图片读取之后(H,W,C)或者(batch,H,W,C) 在元素总数不变的情况下:numpy类型的可以直接使用方法numpy.reshape任意改变大小,numpy.expand_dims增加维度,大小是1(这个函数可以参考numpy.expand_...

2019-03-12 18:56:02

阅读数 47

评论数 0

机器学习/深度学习入门:VGGNet模型实现

VGGNet:ILSVRC2014年亚军 改进 (1)通过不断加深网络结构来提升性能。网络层数的增长并不会带来参数量上的爆炸,因为参数量主要集中在最后三个全连接层中。 (2)在 AlexNet 基础上将单层网络替换为堆叠的3*3的卷积层和2*2的最大池化层,减少卷积层参数,同时加深网...

2019-03-07 17:34:33

阅读数 23

评论数 0

Python入门:作用域和命名空间

变量作用域 一个程序的所有的变量并不是在哪个位置都可以访问的。访问权限决定于这个变量是在哪里赋值的。 变量的作用域决定了在哪一部分程序你可以访问哪个特定的变量名称。两种最基本的变量作用域:全局变量和局部变量 全局变量和局部变量 定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局...

2019-02-22 15:17:18

阅读数 23

评论数 0

Pytorch入门:构建网络模型方法

利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。 假设构建一个网络模型如下: 卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional ...

2019-02-18 11:17:23

阅读数 41

评论数 0

表情识别:ECCV2016《Peak-Piloted Deep Network for Facial Expression Recognition》

研究背景 1. 大多数FER(Facial Expression Recognition)方法在学习期间独立地考虑每个样本,忽略每对样本之间的内在相关,这限制了模型的辨别能力。 2. 大多数FER方法专注于识别明显可区分的peak expressions ,并忽略最常见的non-peak  e...

2019-01-02 20:20:49

阅读数 236

评论数 4

Pytorch入门:visdom启动出错

启动visdom: python -m visdom.server 问题描述: Downloading scripts. It might take a while. ERROR:root:Error [SSL: CERTIFICATE_VERIFY_FAILED] certificat...

2019-01-02 11:31:47

阅读数 232

评论数 1

机器学习/深度学习入门:AlexNet模型实现

AlexNet:ILSVRC2012年冠军 改进 (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。 (2)训...

2018-11-15 11:31:51

阅读数 180

评论数 0

目标检测入门:CVPR2014《R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentat》

研究背景 速度: 经典的目标检测算法使用滑动窗法依次判断所有可能的区域。本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,进行判断。 训练集: 经典的目标检测算法在区域中提取人工设定的特征(Haar,HOG)。本文则需要训练深度网络进行特征提取。可供使用的有两个数...

2018-11-14 14:10:30

阅读数 85

评论数 0

机器学习/深度学习入门:总结损失函数

分类问题损失函数——交叉熵(crossentropy)和Softmax 交叉熵 交叉熵刻画了两个概率分布之间的距离,是分类问题中使用广泛的损失函数。给定两个概率分布p和q,交叉熵刻画的是两个概率分布之间的距离: 对于交叉熵理解比较透彻:https://blog.csdn.net/tsyc...

2018-11-12 15:19:24

阅读数 83

评论数 0

Python入门:zip、lambda、filter、map、reduce

zip() 用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。 a = [1,2,3] b = [4,5,6] c = [4,5,6...

2018-11-06 10:22:41

阅读数 53

评论数 0

图像处理入门:图像增强之空域滤波

空域滤波分为:1.图像平滑(去噪声);2.图像锐化(突出轮廓)。 其中图像平滑的主要目的是:1.模糊。在提取较大目标前,去除小的细节或将目标内的小间断连接起来的;2.消除噪声。改善质量,降低干扰。 平滑滤波对图像的低频分量增强,同时削弱高频分量,用于消除图像中的随机噪声,起到平滑作用。 ...

2018-11-04 21:02:46

阅读数 149

评论数 0

Linux入门:安装opencv后报错

在CentOS中安装了opencv-python 之后,在使用 import cv2 时报错和相应的解决方法(在CentOS中没有apt-get时,可以使用如下方法)。 错误1: ImportError: libSM.so.6: cannot open shared object file:...

2018-11-02 16:40:54

阅读数 136

评论数 0

机器学习/深度学习入门:LeNet模型实现

LeNet:最早用于数字识别的CNN 输入层:32*32===》C1===》S2(平均池化)===》C3===》S4===》F5===》F6===》F7(输出层) TensorFlow实现 数据集准备: 首先是网络结构如下: #!/usr/bin/env python # -*...

2018-11-02 16:08:09

阅读数 139

评论数 0

图像处理入门:图像增强之灰度变换

改善降质图像的方法:1.图像增强;2.图像复原 其中图像增强的主要内容如下: 也有人将空间域变换划分为: 灰度变换也被称为图像的点运算(只针对图像的某一像素点)是所有图像处理技术中最简单的技术,其变换形式如下:s=T(r) 其中,T是灰度变换函数;r是变换前的灰度;s是变换后的像...

2018-10-28 15:48:13

阅读数 226

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭