BZOJ 1297 SCOI2009 迷路 矩阵乘法

该博客探讨了如何利用矩阵乘法解决SCOI2009中的一道迷路问题。当邻接矩阵的所有边权为1时,可以通过矩阵自乘T次来获取从1到n的路径数,即答案为a[1][n]。对于边权最大为9的情况,博主提出通过拆分节点并建立新边来等效转换边权,从而应用矩阵乘法求解。
摘要由CSDN通过智能技术生成

题目大意:给定一个邻接矩阵,求1~n的边权恰好为T的路径条数

考虑当所有边权都是1的时候 那么显然邻接矩阵自乘T次之后a[1][n]就是答案

因为当边权为1的时候a[i][j]可以表示从第i个点转移到第j个点的方案数 显然这个符合矩乘的定义

现在边权最大为9 那么将一个点拆成9个 第i个点拆成的第j+1个点向第j个点连一条边权为1的边

那么i->j有一条边权为k的边等价于i向j拆成的第k个点连边

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100
#define MOD 2009
#define P(i,j) (((j)-1)*m+(i))
using namespace std;
struct Matrix{
	int xx[M][M];
	Matrix()
	{
		memset(xx,0,sizeof xx);
	}
	int* operator [] (int x)
	{
		return xx[x];
	}
}a,map;
int n,m,t;
void operator *= (Matrix &x,Matrix &y)
{
	int i,j,k;
	Matrix z;
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
			for(k=1;k<=n;k++)
				z[i][j]+=x[i][k]*y[k][j],z[i][j]%=MOD;
	x=z;
}
void Quick_Power(int y)
{
	static Matrix x=map;
	while(y)
	{
		if(y&1)a*=x;
		x*=x;
		y>>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值