一、多进程的概念
由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。
multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。
但在使用这些共享API的时候,我们要注意以下几点:
Process.PID中保存有PID,如果进程还没有start(),则PID为None。
window系统下,需要注意的是要想启动一个子进程,必须加上那句if __name__ == "main",进程相关的要写在这句下面。
简单调用
- 在UNIX平台上,当某个进程终结之后,该进程需要被其父进程调用wait,否则进程成为僵尸进程(Zombie)。所以,有必要对每个Process对象调用join()方法 (实际上等同于wait)。对于多线程来说,由于只有一个进程,所以不存在此必要性。
- multiprocessing提供了threading包中没有的IPC(比如Pipe和Queue),效率上更高。应优先考虑Pipe和Queue,避免使用Lock/Event/Semaphore/Condition等同步方式 (因为它们占据的不是用户进程的资源)。
- 多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。此时我们可以通过共享内存和Manager的方法来共享资源。但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。
from multiprocessing import Process
import time
def f(name):
time.sleep(1)
print('hello', name, time.ctime())
if __name__ == '__main__':
p_list = []
for i in range(3):
p = Process(target=f, args=('alvin',))
p_list.append(p)
p.start()
for i in p_list:
p.join()
print('end')
hello alvin Wed Sep 12 23:41:39 2018
hello alvin Wed Sep 12 23:41:39 2018
hello alvin Wed Sep 12 23:41:39 2018
end
类式调用
from multiprocessing import Process
import time
class MyProcess(Process):
def __init__(self):
super(MyProcess, self).__init__()
#self.name = name
def run(self):
time.sleep(1)
print ('hello', self.name, time.ctime())
if __name__ == '__main__':
p_list = []
for i in range(3):
p = MyProcess()
p.start()
p_list.append(p)
for p in p_list:
p.join()
print('end')
output:
hello MyProcess-1 Wed Sep 12 23:50:16 2018
hello MyProcess-2 Wed Sep 12 23:50:16 2018
hello MyProcess-3 Wed Sep 12 23:50:16 2018
end
子进程与父进程的关系
from multiprocessing import Process
import os
import time
def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())
def f(name):
info('\033[31;1mfunction f\033[0m')
print('hello', name)
if __name__ == '__main__':
info('\033[32;1mmain process line\033[0m')
time.sleep(10)
p = Process(target=info, args=('bob',))
p.start()
p.join()
output:
main process line
module name: __main__
parent process: 8400
process id: 19604
bob
module name: __mp_main__
parent process: 19604
process id: 16216
二、 Process类
构造方法:
Process([group [, target [, name [, args [, kwargs]]]]])
group: 线程组,目前还没有实现,库引用中提示必须是None;
target: 要执行的方法;
name: 进程名;
args/kwargs: 要传入方法的参数。
实例方法:
is_alive():返回进程是否在运行。
join([timeout]):阻塞当前上下文环境的进程程,直到调用此方法的进程终止或到达指定的timeout(可选参数)。
start():进程准备就绪,等待CPU调度
run():strat()调用run方法,如果实例进程时未制定传入target,这star执行t默认run()方法。
terminate():不管任务是否完成,立即停止工作进程
属性:
authkey
daemon:和线程的setDeamon功能一样
exitcode(进程在运行时为None、如果为–N,表示被信号N结束)
name:进程名字。
pid:进程号。
三、进程间通讯
不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以用以下方法:
Queues
使用方法跟threading里的queue类似:
from multiprocessing import Process, Queue
def f(q,n):
q.put([42, n, 'hello'])
if __name__ == '__main__':
q = Queue()
p_list=[]
for i in range(3):
p = Process(target=f, args=(q,i))
p_list.append(p)
p.start()
print(q.get())
print(q.get())
print(q.get())
for i in p_list:
i.join()
Pipes
from multiprocessing import Process, Pipe
def f(conn):
conn.send([42, None, 'hello'])
conn.close()
if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv()) # prints "[42, None, 'hello']"
p.join()
Managers
from multiprocessing import Process, Manager
def f(d, l,n):
d[n] = '1'
d['2'] = 2
d[0.25] = None
l.append(n)
print(l)
if __name__ == '__main__':
with Manager() as manager: ##manager=Manager()
d = manager.dict()
l = manager.list(range(5))
p_list = []
for i in range(10):
p = Process(target=f, args=(d, l,i))
p.start()
p_list.append(p)
for res in p_list:
res.join()
print(d)
print(l)
四、进程池
进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。
进程池中有两个方法:
- apply
- apply_async
from multiprocessing import Process,Pool
import time
def Foo(i):
time.sleep(2)
return i+100
def Bar(arg):
print('-->exec done:',arg)
pool = Pool(5)
for i in range(10):
pool.apply_async(func=Foo, args=(i,),callback=Bar)
#pool.apply(func=Foo, args=(i,))
print('end')
pool.close()
pool.join()