最大子序和
o(1)空间复杂度
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
#o(1)空间复杂度
#为“最大子矩阵“做铺垫,记录下标
max_sum=nums[0]
dp_i=nums[0]
ans=[0,0]
begin=0
for i in range(1,len(nums)):
if dp_i>0:
dp_i=dp_i+nums[i]
else:
dp_i=nums[i]
begin=i
if dp_i>max_sum:
max_sum=dp_i
ans[0] = begin
ans[1] = i
return sum(nums[ans[0]:ans[1]+1])
# return max_sum
面试题 17.24. 最大子矩阵
class Solution {
public:
vector<int> getMaxMatrix(vector<vector<int>>& matrix) {
vector<int> ans(4);//保存最大子矩阵的左上角和右下角的行列坐标
int N = matrix.size();
int M = matrix[0].size();
vector<int> b(M,0);//记录当前i~j行组成大矩阵的每一列的和,将二维转化为一维
int sum;//相当于dp[i],dp_i
int maxsum=INT_MIN;//记录最大值
int bestr1,bestc1;//暂时记录左上角,相当于begin
for(int i=0;i<N;i++){ //以i为上边,从上而下扫描
for(int t=0;t<M;t++ ) b[t]=0; //每次更换子矩形上边,就要清空b,重新计算每列的和
for(int j=i;j<N;j++){ //子矩阵的下边,从i到N-1,不断增加子矩阵的高
//一下就相当于求一次最大子序列和
sum = 0;//从头开始求dp
for(int k=0;k<M;k++){
b[k]+=matrix[j][k];
//我们只是不断增加其高,也就是下移矩阵下边,所有这个矩阵每列的和只需要加上新加的哪一行的元素
//因为我们求dp[i]的时候只需要dp[i-1]和nums[i],所有在我们不断更新b数组时就可以求出当前位置的dp_i
if(sum>0){
sum+=b[k];
}
else{
sum=b[k];
bestr1=i;//自立门户,暂时保存其左上角
bestc1=k;
}
if( sum > maxsum){
maxsum = sum;
ans[0]=bestr1;//更新答案
ans[1]=bestc1;
ans[2]=j;
ans[3]=k;
}
}
}
}
return ans;
}
};
作者:bugsmaker
链接:https://leetcode-cn.com/problems/max-submatrix-lcci/solution/zhe-yao-cong-zui-da-zi-xu-he-shuo-qi-you-jian-dao-/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。