PR曲线、ROC曲线、AUC都是个啥

二分类的性能指标:PR曲线、ROC曲线、AUC的基本相关概念

PR 曲线

PR曲线实则是以precision(精准率)和recall(召回率)这两个变量而做出的曲线,其中recall为横坐标,precision为纵坐标。
一条PR曲线要对应一个阈值。通过选择合适的阈值,比如50%,对样本进行划分,概率大于50%的就认为是正例,小于50%的就是负例,从而计算相应的精准率和召回率。
如果一个学习器的P-R曲线被另一个学习器的P-R曲线完全包住,则可断言后者的性能优于前者。
我们还可以根据曲线下方的面积大小来进行比较,但更常用的是平衡点或者是F1值。平衡点(BEP)是P=R时的取值,如果这个值较大,则说明学习器的性能较好。而F1=2×P×R/(P+R),同样,F1值越大,我们可以认为该学习器的性能较好。

度量

精确率、查准率 P:预测为正例中预测正确的
召回率、查全率 R:真实结果为正例对应的判断结果(判断正例判断对的TP+判断负例判断错的FN)中判断为正例的
真正例率(TPR): TPR=TP/(TP+FN) 与召回率相同
假正例率(FPR): FPR=FP/(TN+FP) 真实结果为负例对应的判断结果中判断为正例的

混淆矩阵

在这里插入图片描述

%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve,roc_auc_score,average_precision_score,auc
def draw_pr(confidence_scores,data_labels):
    plt.figure()
    plt.title('PR Curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.grid()
    
#     精准率、召回率、阈值
    precision,recall,thresholds = precision_recall_curve(data_labels,confidence_scores)
    AP = average_precision_score(data_labels,confidence_scores)
    
    plt.plot(recall,precision,label='pr_curve(AP=%0.2f)'%AP)
    plt.legend()
    plt.show()

ROC曲线(Receiver Operating Characteristic) 受试者工作特征曲线

ROC曲线实则是以假正例率 (FPR)和 真正例率(TPR)这两个为变量而做出的曲线,其中 FPR 为横坐标, TPR 为纵坐标。

分类器可以给出每个样本数据为正例的概率,我们设定一个阈值,当概率大于阈值则预测结果为正例,否则为负例。此时,通过计算我们可以得到一个(TPR,FPR)对,即图像上的一个点。通过不断调整阈值,就得到若干个点,从而画出一条曲线。

为什么使用ROC曲线

ROC有一个很好的特性,当测试集中的正负样本分布变化时,ROC曲线能够保持不变。
实际情况中经常出现类不平衡的现象,即负样本比真样本多很多的情况(或者相反)

如何调整这个阈值呢?

一般来说,分类器会对一批数据(20个)的每个样本给出一个是正例的概率。对给出的概率进行排序,然后依次使用概率作为阈值,这样就得到了20组(FPR, TPR)。
也可以使用未经softmax(或其他处理的)的概率值

AUC(Area Under Curve)

ROC下的面积,[0,1],通常在[0.5,1]之间。
ROC曲线能直观体现分类器的性能,但是需要一个数值,直接判定分类器的性能好坏。

def draw_roc(confidence_scores,data_labels):
    plt.figure()
    plt.grid()
    plt.title('ROC Curve')
    plt.xlabel('FPR')
    plt.ylabel('TPR')
    fpr,tpr,thresholds = roc_auc_score(data_labels,confidence_scores)
    auc = auc(fpr,tpr)
    plt.plot(fpr,tpr,label='roc_curve(AUC=%0.2f)'%auc)
    plt.legend()
    plt.show()
# 正样本的置信度,即模型识别成1的概率
confidence_scores = np.array([0.9, 0.78, 0.6, 0.46, 0.4, 0.37, 0.2, 0.16])
# 真实标签
data_labels = np.array([1,1,0,1,0,0 ,1,1])
draw_roc(confidence_scores,data_labels)
draw_pr(confidence_scores,data_labels)
# 整合了两个函数的画图部分,可以用draw_plt函数处理
def draw_plt(title,xlabel,ylabel,x,y,label_name):
    plt.figure()
    plt.grid()
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.plot(x,y,label=label_name)
    plt.legend()
    plt.show()

TODO

  • 后期加上数据和图片
  • 结合具体二分类案例进一步分析
  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彩虹编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值