参考资料:
https://www.cnblogs.com/pinard/p/5993450.html
https://blog.csdn.net/dinosoft/article/details/43114935
https://blog.csdn.net/qq_16365849/article/details/52702412
ROC 和 AUC再次总结:
ROC是以特异度(FPR)和 灵敏度(TPR)为横纵坐标构成的曲线(实际是折线)。
AUC是ROC “曲线”与 x = 0 和 y = 1直线所构成的面积。
其中ROC曲线的横坐标是特异度(False Posistive Rate) FPR = FP / FP + TN,其含义是误分为正样本的负样本占所有正样本的比例。ROC曲线的纵坐标是灵敏度(True Positive Rate)TPR = TP / TP + FN,其含义是正确分类的正样本占所有正样本的比例。
True Positive, TP: 预测为正样本,实际也为正样本
False Positive, FP: 预测为正样本,实际为负样本
True Negative, TN: 预测为负样本,实际也为负样本
False Negative, FN: 预测为负样本,实际为正样本
准确率(Precision,P)
P = TP / (TP + FP)
召回率(Recall,R&