PR曲线,ROC曲线和AUC的区别

参考资料:
https://www.cnblogs.com/pinard/p/5993450.html
https://blog.csdn.net/dinosoft/article/details/43114935
https://blog.csdn.net/qq_16365849/article/details/52702412

ROC 和 AUC再次总结:
ROC是以特异度(FPR)和 灵敏度(TPR)为横纵坐标构成的曲线(实际是折线)。
AUC是ROC “曲线”与 x = 0 和 y = 1直线所构成的面积。
其中ROC曲线的横坐标是特异度(False Posistive Rate) FPR = FP / FP + TN,其含义是误分为正样本的负样本占所有正样本的比例。ROC曲线的纵坐标是灵敏度(True Positive Rate)TPR = TP / TP + FN,其含义是正确分类的正样本占所有正样本的比例。

True Positive, TP: 预测为正样本,实际也为正样本
False Positive, FP: 预测为正样本,实际为负样本
True Negative, TN: 预测为负样本,实际也为负样本
False Negative, FN: 预测为负样本,实际为正样本

准确率(Precision,P)
P = TP / (TP + FP)

召回率(Recall,R&

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值