Pandas数据的相关性分析

这篇博客基于慕课的'Python数据分析与可视化'课程,介绍了如何通过协方差和Pearson相关系数来衡量两个变量X和Y的相关性。当协方差大于0时,表明正相关;小于0则负相关;等于0则不相关。Pearson相关系数的取值范围在-1到1之间,其绝对值越大,相关性越强。Pandas库提供了方便的相关性分析函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文的主要内容是基于中国大学mooc(慕课)中的“Python数据分析与可视化”课程进行整理和总结。
两个事物,表示成X和Y,如何判断他们之间的相关性?
X增大,Y也增大,两个变量正相关;
X增大,Y减小,两个变量负相关;
X增大,Y没有明显变化,两个变量不相关;
度量两个数据的相关性有以下方法:

  • 协方差,如下所示,如果协方差大于0,则表明正相关,若协方差小于0,则为负相关,协方差为0时,X和Y不相关;
    c o v ( X , Y ) = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) n − 1 cov(X, Y) = \frac{\sum_{i=1}^{n}(X^{i}-\bar{X})(Y^{i}-\bar{Y})}{n - 1} cov(X,Y)=n1i=1n(Xi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值