Logistic 回归 (LR)推导

Logistic 回归是一个常用的分类模型以及神经网络的基础。

二项逻辑斯谛回归
Logistic 回归的思想是将线性模型用来做分类任务,需要找到一个单调可微函数将分类任务的真实标记 y y 与线性回归模型的预测值联系在一起(广义线性模型)。

这里,我们选取一个可以代替单位阶跃函数(不连续)的函数即对数几率函数(Logistic function),它是一种 Sigmoid 函数即形似 S 的函数。

y=11+ez y = 1 1 + e − z

hθ(x)=g(θTx)=11+eθTx h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x

因为 hθ(x) h θ ( x ) 本身代表着结果取 1 1 的概率,因为可以得到以下概率形式:

P(y=1|x;θ)=hθ(x)

P(y=0|x;θ)=1hθ(x) P ( y = 0 | x ; θ ) = 1 − h θ ( x )

两者合并,得到条件概率

P(y|x;θ)=(hθ(x))y(1hθ(x))1y P ( y | x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y

至此,我们已经得到了 Logistic L o g i s t i c 模型。

对于模型的参数估计,我们采取的策略是应用 极大似然估计法
对于 P(y|x;θ) P ( y | x ; θ ) 似然函数为

L(θ)=i=1N(hθ(xi))yi(1hθ(xi))1yi L ( θ ) = ∏ i = 1 N ( h θ ( x i ) ) y i ( 1 − h θ ( x i ) ) 1 − y i

关于似然函数的理解,如果概率论忘得差不多了,可以参考这两篇文章:
http://fangs.in/post/thinkstats/likelihood/
http://yangfangs.github.io/2018/04/06/the-different-of-likelihood-and-probability/

然后对数似然函数为

l(θ)=logL(θ)=i=1Nyilog(hθ(xi))+(1yi)log(1hθ(xi)) l ( θ ) = log ⁡ L ( θ ) = ∑ i = 1 N y i log ⁡ ( h θ ( x i ) ) + ( 1 − y i ) log ⁡ ( 1 − h θ ( x i ) )

我们的目标是极大化对数似然函数。
我们定义 J(θ)=1ml(θ) J ( θ ) = − 1 m l ( θ ) 得到 Logistic L o g i s t i c 的损失函数
J(θ)=1mi=1Nyilog(hθ(xi))+(1yi)log(1hθ(xi)) J ( θ ) = − 1 m ∑ i = 1 N y i log ⁡ ( h θ ( x i ) ) + ( 1 − y i ) log ⁡ ( 1 − h θ ( x i ) )

因此,接下来可以使用梯度下降等最优化方法求得极值参数。

多项逻辑斯谛回归
与二项逻辑斯谛回归相似,其模型定义为,假设离散型随机变量 Y Y 的取值集合为 {1,2,...,K}

P(Y=k|x)=eθkTx1+K1k=1eθkTx,k=1,2,...,K1 P ( Y = k | x ) = e θ k T x 1 + ∑ k = 1 K − 1 e θ k T x , k = 1 , 2 , . . . , K − 1

P(Y=K|x)=11+K1k=1eθkTx P ( Y = K | x ) = 1 1 + ∑ k = 1 K − 1 e θ k T x

参数估计策略与二项逻辑斯谛回归类似。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我来简单介绍一下 logistic 回归的原理推导Logistic 回归是一种分类算,它的目标是根据输入特征预测样本属于哪个类别。在二分类问题中,我们通常将样本分为正类和负类两种情况。Logistic 回归的核心思想是通过一个 Sigmoid 函数将输入特征映射到 0 到 1 的概率值,然后根据概率值进行分类。 具体来说,我们假设有 $m$ 个样本,每个样本有 $n$ 个特征,我们用 $x^{(i)}$ 表示第 $i$ 个样本的特征向量,用 $y^{(i)}$ 表示第 $i$ 个样本的标签(0 或 1)。我们的目标是学习一个函数 $h_{\theta}(x)$,使得对于任意输入特征 $x$,$h_{\theta}(x)$ 都能够预测出该样本属于正类的概率。 我们可以使用逻辑回归模型来实现这个目标。逻辑回归模型的形式如下: $$h_{\theta}(x) = g(\theta^Tx) = \frac{1}{1+e^{-\theta^Tx}}$$ 其中,$\theta$ 是模型参数,$g(z)$ 是 Sigmoid 函数,其定义为: $$g(z) = \frac{1}{1+e^{-z}}$$ 我们的目标是最大化似然函数,即: $$L(\theta) = \prod_{i=1}^m h_{\theta}(x^{(i)})^{y^{(i)}}(1-h_{\theta}(x^{(i)}))^{1-y^{(i)}}$$ 为了方便计算,我们通常使用对数似然函数: $$l(\theta) = \log L(\theta) = \sum_{i=1}^m y^{(i)}\log h_{\theta}(x^{(i)}) + (1-y^{(i)})\log(1-h_{\theta}(x^{(i)}))$$ 我们的目标是最大化对数似然函数,即: $$\max_{\theta} l(\theta)$$ 我们可以使用梯度上升算来求解最优参数 $\theta$。具体来说,我们需要计算对数似然函数的梯度: $$\frac{\partial l(\theta)}{\partial \theta_j} = \sum_{i=1}^m (h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)}$$ 然后根据梯度上升算的更新公式更新参数 $\theta$: $$\theta_j := \theta_j + \alpha \frac{\partial l(\theta)}{\partial \theta_j}$$ 其中,$\alpha$ 是学习率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值