「CSP-S模拟赛」2019第一场


这场考试感觉很奇怪。
T 1 、 T 2 T1、T2 T1T2 都缺一个小特判。
T 3 T3 T3 打了个比暴力优的暴力 还是暴力,但是不知道为什么 W A WA WA 穿了。
考试的时候还玩扫雷…
其实,菜是原罪啊…


T1 小奇取石子

题目

点这里

考场思路

刚开始差点被自己坑了,开考 5 m i n 5min 5min 就码出了一个可以惨痛爆零的 01 01 01 背包。
结果还好的是交卷前几分钟自己出了个小数据卡掉自己,然后就码出一个 80 p t s 80pts 80pts 的代码。
首先根据数据将方法分开。
对于 A 、 B A、B AB 两组数据,很明显暴力都可以过,这个没有问题。
对于 C C C 组数据,定义 d p [ i ] dp[i] dp[i]:得到石子数为 i i i 时的最小选择石子堆。
状转见代码。

#include<cstdio>
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define cg (c=getchar())
inline int qread(){
	int x=0,f=1;char c;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return x*f;
}
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}

const int MAXN=200;
const int MAXK=2500;
const int INF=0x3f3f3f3f;

int n,m,k,a[MAXN+5],maxx;
int dp[MAXK+5];

inline void init(){
	qread(n,m,k);
	for(int i=1;i<=n;++i)qread(a[i]);
}

void dfs(const int i,const int x,const int w){
	if(w>k||x>m)return;
	maxx=Max(maxx,w);
	if(i>n)return;
	dfs(i+1,x+1,w+a[i]);
	dfs(i+1,x,w);
}

inline void getDp(){
	rep(i,1,k)dp[i]=INF;
	rep(i,1,n)rep(j,a[i],k)dp[j]=Min(dp[j],dp[j-a[i]]+1);
	dep(i,k,1)if(dp[i]<=m){maxx=i;break;}
}

signed main(){
	// freopen("stone.in","r",stdin);
	// freopen("stone.out","w",stdout);
	init();
	if(n<=20)dfs(1,0,0);
	else getDp();
	printf("%d\n",maxx);
	return 0;
}

正解

其实就是我的考场代码改个细节,为了保存上一个 i i i 的状态, j j j 应该从大到小枚举
不知道我考场的时候脑子 what 了,这个细节都打错了…

#include<cstdio>
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define cg (c=getchar())
inline int qread(){
	int x=0,f=1;char c;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return x*f;
}
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}

const int MAXN=200;
const int MAXK=2500;
const int INF=0x3f3f3f3f;

int n,m,k,a[MAXN+5],maxx;
int dp[MAXK+5];

inline void init(){
	qread(n,m,k);
	for(int i=1;i<=n;++i)qread(a[i]);
}

void dfs(const int i,const int x,const int w){
	if(w>k||x>m)return;
	maxx=Max(maxx,w);
	if(i>n)return;
	dfs(i+1,x+1,w+a[i]);
	dfs(i+1,x,w);
}

inline void getDp(){
	rep(i,1,k)dp[i]=INF;
	rep(i,1,n)dep(j,k,a[i])dp[j]=Min(dp[j],dp[j-a[i]]+1);
	dep(i,k,1)if(dp[i]<=m){maxx=i;break;}
}

signed main(){
	// freopen("stone.in","r",stdin);
	// freopen("stone.out","w",stdout);
	init();
	if(n<=20)dfs(1,0,0);
	else getDp();
	printf("%d\n",maxx);
	return 0;
}

T2 「CCO 2017」专业网络

题目

点这里

考场思路

所谓信息竞赛,其实就是面向数据编程

看看数据范围,发现前两组很好骗分,然后就可以对于这两组数据进行骗分了…

#include<cstdio>
#include<algorithm>
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
using namespace std;
#define cg (c=getchar())
inline int qread(){
	int x=0,f=1;char c;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return x*f;
}
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}

const int MAXN=2e5;
const int INF=0x3f3f3f3f;

int N,maxb,ans=INF;
struct node{
	int a,b;
	inline void input(){qread(a,b);if(a==0)b=0;}
	node(){}
	node(const int A,const int B):a(A),b(B){}
	bool operator<(const node t){return b==t.b?a<t.a:b<t.b;}
}p[MAXN+5];

inline void init(){
	qread(N);
	rep(i,1,N)p[i].input(),maxb=Max(maxb,p[i].b);
}

inline void dfs30(const int,const int,const int);
inline bool cmp30(const node _x,const node _y){
	return _x.a==_y.a?_x.b<_y.b:_x.a<_y.a;
}
inline void pts30(){
	sort(p+1,p+N+1,cmp30);
	dfs30(0,0,0);
}

inline void dfs30(int tot,int state,const int cost){
	if(tot==N)return (void)(ans=Min(ans,cost));
	if(cost>ans)return;

	rep(i,1,N)if(!(state&(1<<(i-1)))&&tot>=p[i].a)++tot,state|=(1<<(i-1));

	if(tot==N)return (void)(ans=Min(ans,cost));

	rep(i,1,N)if(!(state&(1<<(i-1))))
		dfs30(tot+1,state|(1<<(i-1)),cost+p[i].b);
}

inline bool cmp15(const node _x,const node _y){
	return _x.a>_y.a;
}
inline void pts15(){
	sort(p+1,p+N+1,cmp15);
	int l=1,r=N,tot=0;ans=0;
	while(l<=r){
		while(p[r].a<=tot)--r,++tot;
		if(r<l)break;
		if(p[l].a>tot)++ans;
		++l,++tot;
	}
}

signed main(){
	// freopen("network.in","r",stdin);
	// freopen("network.out","w",stdout);
	init();
	if(maxb==1)pts15();
	else pts30();
	printf("%d\n",ans);
	return 0;
}

题解

其实,这道题跟 《信息奥赛一本通》中的不守交规 有异曲同工之妙。—— JZM \text{JZM} JZM 大佬

首先,我们跟每一个人建立友谊关系的状态肯定唯一。
假如我们跟 i i i 交朋友之前,我们已经交了 j j j 个朋友。
那么,肯定不存在 k ( k ≠ i ) k(k\neq i) k(k=i) 使得我们在与 k k k 交朋友之前已经交了 j j j 个朋友。
所以,我们的 j j j 可以取 [ 0 , N − 1 ] [0,N-1] [0,N1] 之中的数。
那么,我们只需要在交这 N N N 个朋友的时候,将他们对应到这 [ 0 , N − 1 ] [0,N-1] [0,N1] N N N 个数中去即可。
而如果 i i i 是不用花费的,那么它的对应值一定在 [ A i , N − 1 ] [A_i,N-1] [Ai,N1] 中的一个数。
贪心地,我们首先要满足那些 B i B_i Bi 较大的数,这样我们的花费就会尽可能的少。
而为了让区间能够对应的数尽可能多,我们的搜索需要从 A i A_i Ai 开始枚举。
而对于一个 i i i,如果在 [ A i , N − 1 ] [A_i,N-1] [Ai,N1] 中已经没有数没有被对应到,那么它就一定需要支付费用。
那么这一段的代码也就很好写了

for(int i=1,loc;i<=N;++i){
	bool f=true;
	for(int j=p[i].a;j<N;++j)if(!vis[j]){
		vis[j]=true,f=false;
		break;
	}
	if(!f)ans+=p[i].b;
}

然而这是 O ( N 2 ) O(N^2) O(N2) 的算法,它最多只能得到 60 p t s 60pts 60pts,因此我们需要用到并查集优化。
时间复杂度接近于 O ( N ) O(N) O(N),我省掉了反阿克曼函数,它增长地太慢了。

#include<cstdio>
#include<algorithm>
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
using namespace std;
#define cg (c=getchar())
inline int qread(){
	int x=0,f=1;char c;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return x*f;
}
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}

const int MAXN=2e5;

int N,ans,pre[MAXN+5];bool vis[MAXN+5];
struct node{
	int a,b;
	inline void input(){qread(a,b);}
	node(){}
	node(const int A,const int B):a(A),b(B){}
	bool operator<(const node t){return b==t.b?a<t.a:b>t.b;}
}p[MAXN+5];

inline void init(){
	qread(N);
	for(int i=1;i<=N;++i)p[i].input();
	sort(p+1,p+N+1);
}

inline int findSet(const int u){
	return u==pre[u]?u:pre[u]=findSet(pre[u]);
}

inline void calc(){
	for(int i=1;i<=N;++i)pre[i]=i;
	for(int i=1,loc;i<=N;++i){
		loc=findSet(p[i].a);
		if(loc>=N)ans+=p[i].b;
		else pre[loc]=loc+1;
	}
}

signed main(){
	init();
	calc();
	printf("%d\n",ans);
	return 0;
}

T3 「ZJOI2017」线段树

题目

点这里

考场思路

考试的时候,我想到一种时间复杂度只有 O ( n m ) O(nm) O(nm) 的暴力算法 虽然还是暴力,但是时间少了点
但是我没有仔细思考其正确性。
大致思路是这样的:
在询问区间 [ l , r ] [l,r] [l,r] 的时候,假如有某一段区间 [ l ′ , r ′ ] [l',r'] [l,r] u u u 不在大树的同一棵子树上,那么就计算区间 [ l ′ , r ′ ] [l',r'] [l,r] 的贡献。
但是这样做有问题,假若区间 [ l ′ , r ′ ′ ] [l',r''] [l,r] 被包含于 [ l , r ] [l,r] [l,r] ,并且 r ′ r' r r ′ ′ r'' r 不在同一棵子树内,那么我的算法就会使得答案 a n s ans ans 变大。
因为这样做会使我寻找的可以被拼成区间 [ l , r ] [l,r] [l,r] 的点变多,自然而然, a n s ans ans 也就变大了。
附个代码

#include<cstdio>
#define rep(i,__l,__r) for(int i=__l,i##_end_=__r;i<=i##_end_;++i)
#define dep(i,__l,__r) for(int i=__l,i##_end_=__r;i>=i##_end_;--i)
#define cg (c=getchar())
inline int qread(){
	int x=0,f=1;char c;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	return x*f;
}
template<class T>inline void qread(T& x){
	x=0;char c;bool f=0;
	while(cg<'0'||'9'<c)if(c=='-')f=-1;
	for(x=(c^48);'0'<=cg&&c<='9';x=(x<<1)+(x<<3)+(c^48));
	if(f)x=-x;
}
template<class T,class... Args>inline void qread(T& x,Args&... args){qread(x),qread(args...);}
#undef cg
template<class T>inline T Max(const T x,const T y){return x>y?x:y;}
template<class T>inline T Min(const T x,const T y){return x<y?x:y;}
template<class T>inline T fab(const T x){return x>0?x:-x;}

const int MAXN=2e5;

struct node{
	int l,r,mid,d,lc,rc;
	node(){lc=rc=0;}
	node(const int L,const int R,const int M,const int D):l(L),r(R),mid(M),d(D){lc=rc=0;}
}tre[(MAXN<<1)+5];

int N,q,ncnt,ans;
int s[(MAXN<<1)+5],tail;

inline int buildtre(const int pre,const int l,const int r,const int d){
	int now=++ncnt;
	if(l==r)return tre[now]=node(l,r,0,d),now;
	tre[now]=node(l,r,qread(),d);
	tre[now].lc=buildtre(now,l,tre[now].mid,d+1);
	tre[now].rc=buildtre(now,tre[now].mid+1,r,d+1);
	return now;
}

inline void init(){
	qread(N);
	buildtre(0,1,N,1);
}

void getNode(const int i,const int l,const int r){
	if(l<=tre[i].l&&tre[i].r<=r)return (void)(s[++tail]=i);
	if(l<=tre[i].mid)getNode(tre[i].lc,l,r);
	if(r>tre[i].mid)getNode(tre[i].rc,l,r);
}

inline void calc(const int lca,const int u){
	while(tail>0)ans+=tre[s[tail--]].d+tre[u].d-2*tre[lca].d;
}

void algor(const int i,const int u,const int l,const int r){

	// printf("algor : %d %d %d %d\n",i,u,l,r);

	if(u==i){
		getNode(i,l,r);
		calc(i,i);
		return;
	}

	if(tre[i].lc<=u&&u<tre[i].rc&&r<=tre[i].mid)algor(tre[i].lc,u,l,r);
	else if(u>=tre[i].rc&&l>tre[i].mid)algor(tre[i].rc,u,l,r);
	//以上皆为同方向的子树时
	else{
		//在不同向
		//此时一定可以保证, i 即为他们的 lca
		if(u>=tre[i].rc&&l<=tre[i].mid){//当询问区间的 部分/全部 在左边, 点在右边时
			getNode(tre[i].lc,l,Min(tre[i].mid,r));
			calc(i,u);
			if(r>tre[i].mid)algor(tre[i].rc,u,tre[i].mid+1,r);
		}
		else if(tre[i].lc<=u&&u<tre[i].rc&&r>tre[i].mid){//当询问区间的 部分/全部 在右边, 点在左边时
			getNode(tre[i].rc,Max(tre[i].mid+1,l),r);
			calc(i,u);
			if(l<=tre[i].mid)algor(tre[i].lc,u,l,tre[i].mid);
		}
		/*
		else if(u==i){//当点就是当前的点的时候, 直接在其子树中寻找区间的点进行计算
			getNode(i,l,r);
			calc(i,i);
		}
		*/
	}
}

inline void getQuery(){
	int q=qread(),u,l,r;
	while(q--){ans=0;
		qread(u,l,r);
		algor(1,u,l,r);
		printf("%d\n",ans);
	}
}

signed main(){
	// freopen("0.in","r",stdin);
	// freopen("tree.out","w",stdout);
	init();
	// puts("finished input!");
	getQuery();
	return 0;
}

正解

一道编码较为困难的数据结构题。
首先,我们解决询问的区间的问题。
看下面这张图
在这里插入图片描述
其实这个就是题目描述里面的那张图。
假设我们需要访问区间 [ 2 , 4 ] [2,4] [2,4],应该怎么做呢?
方法一
你可以肉眼看…虽然这样好像不能交到 O J OJ OJ 上去…
但是我们可以看出我们要找的节点是 ( 2 − 3 ) (2-3) (23) ( 4 − 4 ) (4-4) (44)
方法二
使用类似于普通线段树的方法进行区间查找,这样的复杂度对于这样的广义线段树来说大概是 O ( n ) O(n) O(n) 的。
方法三
可以用类似于 zkw \text{zkw} zkw 线段树 的方式。
我们要访问区间 [ 2 , 4 ] [2,4] [2,4] ,那么左边从 ( 1 − 1 ) (1-1) (11) 开始,右边从 ( 5 − 5 ) (5-5) (55) 开始,一起往上爬。
如果左边点往上爬,发现它是父亲节点的左儿子,那么其父节点的右儿子是一定是我们要找的点。
如果右边点往上爬,发现他是父节点的右儿子,那么其父节点的左儿子是一个是我们要找的点。
大概搜索的结果就是在这里插入图片描述
其中,被红色笔圈起来的点是我们要特殊注意的,而蓝色下划线是我们要取到的点。
那么这样做的时间复杂度?不用说, O ( n ) O(n) O(n)


先把这些方法放在一边,看一看我们需要求什么。
题目似乎给出 a n s = ∑ v ∈ S [ l , r ] d i s ( u , v ) ans=\sum_{v\in S[l,r]}dis(u,v) ans=vS[l,r]dis(u,v) d [ u ] d[u] d[u]:点 u u u 的深度。
我们可以将 d i s ( u , v ) dis(u,v) dis(u,v) 换成用 l c a lca lca (时间复杂度 O ( l o g n ) O(logn) O(logn) 左右,不要忽略了)来表示,那么就有 a n s = ∑ v ∈ S [ l , r ] d [ u ] + d [ v ] − 2 ⋅ d [ l c a ( u , v ) ] ans=\sum_{v\in S[l,r]}d[u]+d[v]-2\cdot d[lca(u,v)] ans=vS[l,r]d[u]+d[v]2d[lca(u,v)]假设我们最后可以处理出,我们找到的满足 v ∈ S [ l , r ] v\in S[l,r] vS[l,r] 的点共有 t t t 个,那么这个公式可以再展开: a n s = t ⋅ d [ u ] + ∑ v ∈ S [ l , r ] d [ v ] − ∑ v ∈ S [ l , r ] 2 ⋅ d [ l c a ( u , v ) ] ans=t\cdot d[u]+\sum_{v\in S[l,r]}d[v]-\sum_{v\in S[l,r]}2\cdot d[lca(u,v)] ans=td[u]+vS[l,r]d[v]vS[l,r]2d[lca(u,v)]然而这个式子似乎再也不能往下化简了。


我们再往回看,我们已分析出的两种方法 人为忽略第一种
假若我们用 方法二 ,那么我们似乎并不能做什么优化,只有用标准的线段树做法,时间复杂度还是 O ( n ) O(n) O(n)
假若我们用 方法三 ,那么我们似乎可以用树上差分
怎么个差分法呢?
记录一下每个点的信息

  • t l s [ u ] tls[u] tls[u]:从根到 u u u 一共有多少左儿子是没有经过的
  • t r s [ u ] trs[u] trs[u]:从根到 u u u 一共有多少右儿子是没有经过的
  • t d l s [ u ] tdls[u] tdls[u]:从根到 u u u 一共没见过的左儿子的深度之和
  • t d r s [ u ] tdrs[u] tdrs[u]:从根到 u u u 一共没见过的右儿子的深度之和

那么我们怎么求以上内容呢?
可以在建树的时候顺便处理出来。
假设我们有一个点 f a fa fa,其深度为 d d d,它的左儿子是 l c lc lc,右儿子是 r c rc rc
那么,若 r c rc rc 存在,且 l c lc lc 存在,则满足
t r s [ l c ] = t r s [ f a ] + 1 , t d r s [ l c ] = t d r s [ f a ] + ( d + 1 ) , t l s [ l c ] = t l s [ f a ] , t d l s [ l c ] = t d l s [ f a ] trs[lc]=trs[fa]+1,tdrs[lc]=tdrs[fa]+(d+1),tls[lc]=tls[fa],tdls[lc]=tdls[fa] trs[lc]=trs[fa]+1,tdrs[lc]=tdrs[fa]+(d+1),tls[lc]=tls[fa],tdls[lc]=tdls[fa]而若 r c rc rc 不存在,则有
t r s [ l c ] = t r s [ f a ] , t d r s [ l c ] = t d r s [ f a ] , t l s [ l c ] = t l s [ f a ] , t d l s [ l c ] = t d l s [ f a ] trs[lc]=trs[fa],tdrs[lc]=tdrs[fa],tls[lc]=tls[fa],tdls[lc]=tdls[fa] trs[lc]=trs[fa],tdrs[lc]=tdrs[fa],tls[lc]=tls[fa],tdls[lc]=tdls[fa]如果 l c lc lc 存在,且 r c rc rc 存在,则满足
t r s [ r c ] = t r s [ f a ] , t d r s [ r c ] = t d r s [ f a ] , t l s [ r c ] = t l s [ f a ] + 1 , t d l s [ r c ] = t d l s [ f a ] + ( d + 1 ) trs[rc]=trs[fa],tdrs[rc]=tdrs[fa],tls[rc]=tls[fa]+1,tdls[rc]=tdls[fa]+(d+1) trs[rc]=trs[fa],tdrs[rc]=tdrs[fa],tls[rc]=tls[fa]+1,tdls[rc]=tdls[fa]+(d+1)然后,我们就可以在建树,或者是输入建树时预处理出以上内容即可。
接着之前说的树上差分
假若我们要求区间 [ a , b ] [a,b] [a,b] ,那么我们就从 ( a − 1 , a − 1 ) (a-1,a-1) (a1,a1) ( b + 1 , b + 1 ) (b+1,b+1) (b+1,b+1) 开始往上爬。
找到它们的最近公共祖先 l c a lca lca,那么我们要求的公式中的 t 、 ∑ v ∈ S [ l , r ] d [ v ] t、\sum_{v\in S[l,r]}d[v] tvS[l,r]d[v] 都可以用树上差分解决。
t t t 满足
t = t r s [ l e a f u [ a − 1 ] ] − t r s [ l c a ] + t l s [ l e a f u [ b + 1 ] ] − t l s [ l c a ] t=trs[leafu[a-1]]-trs[lca]+tls[leafu[b+1]]-tls[lca] t=trs[leafu[a1]]trs[lca]+tls[leafu[b+1]]tls[lca] ∑ v ∈ S [ l , r ] d [ v ] \sum_{v\in S[l,r]}d[v] vS[l,r]d[v] 满足
∑ v ∈ S [ l , r ] d [ v ] = t d r s [ l e a f u [ a − 1 ] ] − t d r s [ l c a ] + t d l s [ l e a f u [ b + 1 ] ] − t d l s [ l c a ] \sum_{v\in S[l,r]}d[v]=tdrs[leafu[a-1]]-tdrs[lca]+tdls[leafu[b+1]]-tdls[lca] vS[l,r]d[v]=tdrs[leafu[a1]]tdrs[lca]+tdls[leafu[b+1]]tdls[lca]似乎以上部分都是可以使用 O ( l o g ) O(log) O(log) (寻找 l c a lca lca)来 O ( 1 ) O(1) O(1) 地解决问题,但是 a n s ans ans 还有一个部分:
− ∑ v ∈ S [ l , r ] 2 ⋅ d [ l c a ( u , v ) ] -\sum_{v\in S[l,r]}2\cdot d[lca(u,v)] vS[l,r]2d[lca(u,v)]这个部分能否使用树上差分呢?
答案是:肯定不行。
为什么?因为 v v v 在改变时, l c a ( u , v ) lca(u,v) lca(u,v) 也在跟着改变。
那么怎么做?
分类讨论 u u u 的位置,这里就和我的暴力思路有点相像。
分以下几类:
先假设以 l e a f u [ a − 1 ] 、 l e a f u [ b + 1 ] , l c a leafu[a-1]、leafu[b+1],lca leafu[a1]leafu[b+1],lca 围成的树为 t r e tre tre
f l c a ( ) flca() flca() 为寻找 l c a lca lca 的算法。

  • u u u t r e tre tre 之外时。这样又要分两类
    - 当 u u u l c a lca lca 的祖先,那么一定满足 ∀ v ∈ S [ l , r ] , f l c a ( u , v ) = u \forall v\in S[l,r],flca(u,v)=u vS[l,r],flca(u,v)=u
    - 当 u u u 不是 l c a lca lca 的祖先,那么一定满足 ∀ v ∈ S [ l , r ] , f l c a ( u , v ) = l c a ( l c a , u ) \forall v\in S[l,r],flca(u,v)=lca(lca,u) vS[l,r],flca(u,v)=lca(lca,u)
  • u u u t r e tre tre 之内时,对于这种情况需要自行推理。。。

另注:
可以发现,如果我们就这样建树的话,如果询问区间 [ 1 , n ] [1,n] [1,n] 之类的区间就会出现问题,那么怎么解决?其实可以这样建图(以题目的树为例)
在这里插入图片描述
代码

没时间补题啊
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值