【题解】A566.三点共线

题目大意,给定在平面直角坐标系中的多个点,判断有多少个三元组 ( A , B , C ) (A, B, C) (A,B,C) 满足共线性质。

题目链接:A566.三点共线

大题思路就是暴力所有的三元组,判断三个元素的斜率是否相同即可。其实还有其他方法可以做,我个人感觉用斜率法最简单。

有几点需要注意:

  1. 在计算斜率的时候,如果多个点处于一个与横坐标轴垂直的线上,那么除以 0 0 0 的时候会爆 RE \color{royalblue}\text{RE} RE 需要特判一下。

  2. 存储的时候需要使用 double 类型。

  3. 在选取三元组的时候,需要保证不重复不遗漏。不会出现一个点被多次选中,相同的组合被多次计算的情况。

  4. 斜率法

    对于三个点 ( x 1 , y 1 ) (x_1, y_1) (x1,y1), ( x 2 , y 2 ) (x_2, y_2) (x2,y2), 和 ( x 3 , y 3 ) (x_3, y_3) (x3,y3),计算任意两点之间的斜率。如果这三个斜率相等,则这三个点共线。但是要注意的是,当两个点的 x 坐标相等时,斜率会无穷大,因此在实际计算中需要特别处理这种情况。

    d y d x = y 2 − y 1 x 2 − x 1 \frac{dy}{dx} = \frac{{y_2 - y_1}}{{x_2 - x_1}} dxdy=x2x1y2y1

#include <iostream>
using namespace std;

struct point{
    int x;
    int y;
} arr[105]; 
int n, cnt = 0;

int main(){
	cin >> n;
    for (int i=1; i<=n; i++)
        cin >> arr[i].x >> arr[i].y;
    
    for (int i=1; i<=n; i++){
        for (int j=i+1; j<=n; j++){
            for (int k=j+1; k<=n; k++){
                int x1 = arr[i].x; int x2 = arr[j].x; int x3 = arr[k].x;
                int y1 = arr[i].y; int y2 = arr[j].y; int y3 = arr[k].y;
				if (x1 - x2 == 0 && x3 - x2 == 0){
                    cnt++;
                    continue;
                }
                if (x1 - x2 == 0 || x3 - x2 == 0) 
                    continue;
                double s1 = 1.0 * (y2 - y1) / (x2 - x1);
                double s2 = 1.0 * (y3 - y2) / (x3 - x2);
                if (s1 == s2) cnt++;
            }
        }
    }
    cout << cnt << endl;
    return 0;
}
  1. 向量法

    设想将三个点看作向量,即 P 1 P 2 ⃗ \vec{P_1P_2} P1P2 P 1 P 3 ⃗ \vec{P_1P_3} P1P3 。如果这两个向量是平行的,则三个点共线。你可以通过计算这两个向量的叉积来验证它们是否平行。如果叉积为零,则两个向量平行,即三个点共线。

    Cross Product = P 1 P 2 ⃗ × P 1 P 3 ⃗ = ( x 2 − x 1 ) ( y 3 − y 1 ) − ( y 2 − y 1 ) ( x 3 − x 1 ) \text{Cross Product} = \vec{P_1P_2} \times \vec{P_1P_3} = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) Cross Product=P1P2 ×P1P3 =(x2x1)(y3y1)(y2y1)(x3x1)

#include <iostream>
using namespace std;

struct point{
    int x;
    int y;
} arr[105]; 
int n, cnt;

int main(){
	cin >> n;
    for (int i=1; i<=n; i++)
        cin >> arr[i].x >> arr[i].y;
    
    for (int i=1; i<=n; i++){
        for (int j=i+1; j<=n; j++){
            for (int k=j+1; k<=n; k++){
                int x1 = arr[i].x; int x2 = arr[j].x; int x3 = arr[k].x; 
                int y1 = arr[i].y; int y2 = arr[j].y; int y3 = arr[k].y;
				if ((x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1) == 0) 
					cnt++;
            }
        }
    }
    cout << cnt << endl;
    return 0;
}
  1. 行列式法

    将三个点的坐标表示成矩阵形式,然后计算这个矩阵的行列式。如果行列式的值为零,则表示这三个点共线。有关行列式的计算可以自行在搜索引擎上搜索。

    Determinant = ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ = 0 \text{Determinant} = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0 Determinant= x1x2x3y1y2y3111 =0

#include <iostream>
using namespace std;

struct point{
    int x;
    int y;
} arr[105]; 
int n, cnt;

int main(){
	cin >> n;
    for (int i=1; i<=n; i++)
        cin >> arr[i].x >> arr[i].y;
    
    for (int i=1; i<=n; i++){
        for (int j=i+1; j<=n; j++){
            for (int k=j+1; k<=n; k++){
                double x1 = arr[i].x; double x2 = arr[j].x; double x3 = arr[k].x; 
                double y1 = arr[i].y; double y2 = arr[j].y; double y3 = arr[k].y;
				if (x1 * y2 + y1 * x3 + x2 * y3 - x1 * y3 - y2 * x3 - x2 * y1 == 0)
					cnt++;
            }
        }
    }
    cout << cnt << endl;
    return 0;
}
  1. 面积法

    如果三个点 A ( x 1 , y 1 ) A(x_1, y_1) A(x1,y1), B ( x 2 , y 2 ) B(x_2, y_2) B(x2,y2), 和 C ( x 3 , y 3 ) C(x_3, y_3) C(x3,y3) 共线,则它们构成的三角形的面积为零。

    S a r e a = 1 2 ∣ x 1 ( y 2 − y 3 ) + x 2 ( y 3 − y 1 ) + x 3 ( y 1 − y 2 ) ∣ S_{area} = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| Sarea=21x1(y2y3)+x2(y3y1)+x3(y1y2)

#include <iostream>
using namespace std;

struct point{
    int x;
    int y;
} arr[105]; 
int n, cnt;

int main(){
	cin >> n;
    for (int i=1; i<=n; i++)
        cin >> arr[i].x >> arr[i].y;
    
    for (int i=1; i<=n; i++){
        for (int j=i+1; j<=n; j++){
            for (int k=j+1; k<=n; k++){
                int x1 = arr[i].x; int x2 = arr[j].x; int x3 = arr[k].x; 
                int y1 = arr[i].y; int y2 = arr[j].y; int y3 = arr[k].y;
                if (0.5 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3*(y1-y2)) == 0)
					cnt++;
            }
        }
    }
    cout << cnt << endl;
    return 0;
}

以上所有代码的时间复杂度为 O ( n 3 ) O(n^3) O(n3),其中 n n n 是点的数量。但对于本题而言,没有问题不会超时。

  • 27
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态分区分配方式是一种通过划分内存块来满足进程的内存需求的方法。这种分配方式的实现需要使用空闲分区表来记录内存的空闲情况,并根据进程的大小找到合适的空闲分区进行分配。 对于a.5中的题目,我们可以使用一个动态分区分配方式的模拟答案来解答。假设有以下内存空间和进程需求: 内存空间: 1. 起始地址:0,大小:100 2. 起始地址:100,大小:50 3. 起始地址:150,大小:75 4. 起始地址:225,大小:200 进程需求: 1. 进程A,大小:130 2. 进程B,大小:70 3. 进程C,大小:90 初始状态下,空闲分区表中只有一个分区,起始地址为0,大小为400。按照从小到大的顺序,我们可以将进程依次分配到空闲分区中。首先,将进程A分配到起始地址为0,大小为130的分区中,更新空闲分区表为: 1. 起始地址:130,大小:370 然后,将进程B分配到起始地址为130,大小为70的分区中,更新空闲分区表为: 1. 起始地址:200,大小:300 最后,将进程C分配到起始地址为200,大小为90的分区中,更新空闲分区表为: 1. 起始地址:290,大小:210 经过分配后,空闲分区表中只有一个分区,它的起始地址为290,大小为210。 这样,我们利用动态分区分配方式将进程分配到内存空间,并更新了空闲分区表的内容。通过这个模拟答案,我们可以更好地理解动态分区分配方式的工作原理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值