汉诺塔问题的来源(引用百度):
相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘(如图)。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。
分析过程(以三层为例,图片非本人所画,引用自网络,如侵权请联系删除):
这是初始状态(图1):
图1
我们需要将A杆上的圆盘以大的在下,小的在上的原则放在C杆上
所以需要将A杆上前两个盘子先移走,但是因需要将最大的盘子放置到C杆底部,所以前两个盘子不能直接放到C上,而需要先放到B上(以B杆作为中转杆)
但要将前两个盘子按大的在下,小的在上的原则放到B杆上,则需要将最小