Numpy练习-用0或1包裹数组-np.pad()

本文介绍了Numpy库中的np.pad()函数,用于在数组的边缘添加额外的行或列。该函数接受array、pad_width和mode等参数,其中pad_width定义填充的维度,mode决定填充内容的类型。通过示例展示了如何在一维和二维数组中使用np.pad(),包括创建边界值为1、内部值为0的二维数组,以及边界值为0、内部值为1的二维数组。
摘要由CSDN通过智能技术生成

np.pad(array, pad_width, mode, kwargs)
顾名思义,用于给数组array扩充新的行或者列
官网链接:np.pad()
参数意义:
array:要填充的对象
pad_width: 各个方向上填充的维度

pad_width = ((1,2), (2,2)) 指第一维(此时为行)上面填充一位、下面填充两位;第二维(此时为列)左边填充两位、右边填充两位

mode:用于指定填充内容,选择颇多,详见官网。

例1(One Dimension Array):

array = np.array([1, 1, 1])
ndarray = np.pad(array, (1,2), 'constant', constant_values = (0,2))
ndarray:
array([0,1,1,1,2,2])

由于此时为一维数组,pad_width为单个元组,表示在行方向前添加一个常数0,向后添加两个常数2。

例2(Two Dimension Array):

array = np.array([1,1],[2,2])
ndarray = np.pad(array, ((1,1),(2,2)), 'constant'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值