84. Largest Rectangle in Histogram

Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

算法核心是:一次性计算连续递增的区间的最大面积,并且考虑完成这个区间之后,考虑其前、后区间的时候,不会受到任何影响。也就是这个连续递增区间的最小高度大于等于其前、后区间。

这个方法需要使用两个栈。第一个栈为高度栈h,用于记录还没有被计算过的连续递增的序列的值。第二个栈为下标栈index,用于记录高度栈中对应的每一个高度的下标,以计算宽度。

算法具体执行的步骤为:

若h为空或者当前高度大于h栈顶,则当前高度和当前下标分别入站。所以h记录了一个连续递增的序列。

若当前高度小于h栈顶,h和index出栈,直到当前高度大于等于h栈顶。出栈时,同时计算区间所形成的最大面积。

public int largestRectangleArea(int[] height) {
        if(height == null || height.length == 0) return 0;
        if(height.length == 1) return height[0];
        int l = height.length;
        LinkedList<Integer> index = new LinkedList<Integer>();
        LinkedList<Integer> h = new LinkedList<Integer>();
        int max = 0;
        for(int i = 0;i < l;i++){
            if(index.isEmpty() || h.peek() <= height[i]){
                index.push(i);
                h.push(height[i]);
            }
            else{
                int j = 0;
                while(!index.isEmpty() && height[i] < h.peek()){
                    j = index.peek();
                    int area = (i-index.pop())*h.pop();
                    max = Math.max(max,area);
                }
                index.push(j);
                h.push(height[i]);
            }
        }
         while(!index.isEmpty()){
            int area = (l-index.pop())*h.pop();
            max = Math.max(max,area);
        }
        return max;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值