P3431 [POI2005]AUT-The Bus

这篇博客介绍了如何使用离散化、动态规划和树状数组来解决一个关于公交路径上的载客数量最大化的算法问题。在给定的网格中,公交从起点出发,只能向右或向上移动,途中经过若干已知人口数量的格子。通过排序和树状数组的维护,求解公交最终可能载的最大人数。
摘要由CSDN通过智能技术生成

P3431 [POI2005]AUT-The Bus
题意
给你一个n×m的网格,告诉你了k个网格中的信息,(x,y)这个位置有p个人,现在有一辆公交这在(1, 1),它只能向右或者向上走,最终会走到终点,问你最后可能载多少人。
思路
离散化+DP+树状数组
离散化:首先观察给你的n和m的范围: 1 ≤ n ≤ 1 0 9 1\leq n \leq10^9 1n109,m的范围也是这样,所以我们想到了离散化,将坐标离散。
DP:公交车在走的时候肯定是从近走到远,那么对于我们要走到的位置,我们肯定要进行排序,我们不妨将x作为第一关键字进行排序,而y作为第二关键字进行排序,假设我们现在走到了k个点中的第i个点,那么f[i] = max(a[i].y) + a[i].num,这里表示前面接到的人数加上当前位置的人数,然后这里在找max(a[i].y)的时候,物品们可以用树状数组来进行维护。
树状数组:我们上面知道了,维护max(a[i].y)可以采用树状数组来进行维护,那么我们树状数组记录的就是最大值了,而不是前缀和了。
ps:这里为什么f[k]不是最大值呢?首先,我们最终是要到达(n, m)这个点的,但是f[k]不一定是终点。但是我们最终都是要到达终点的。

    #include <bits/stdc++.h>

    using namespace std;

    const int N = 500005;

    int n, m, k;
    int nx, ny;
    int tr[N * 4];
    int f[N];
    int x[N], y[N];
    map<int, int> mpx, mpy;

    struct node
    {
        int x, y, num;
        bool operator < (const node & t) const
        {
            return x == t.x ? y < t.y : x < t.x;
        }
    }a[N];

    int lowbit(int x) { return x & -x; }

    void add(int x, int k) { for (int i = x; i <= N; i += lowbit(i)) tr[i] = max(tr[i], k); }

    int sum(int x)
    {
        int ans = 0;
        for (int i = x; i ; i -= lowbit(i)) ans = max(ans, tr[i]);
        return ans;
    }

    void solve()
    {
        cin >> n >> m >> k;
        for (int i = 1; i <= k; i ++)
        {
            cin >> a[i].x >> a[i].y >> a[i].num;
            x[i] = a[i].x, y[i] = a[i].y;
        }

        x[0] = y[0] = 1;
        sort(x, x + 1 + k), sort(y, y + 1 + k);
        mpx[x[0]] = ++nx, mpy[y[0]] = ++ny;

        for (int i = 1; i <= k; i ++)
        {
            if (x[i] != x[i - 1]) mpx[x[i]] = ++ nx;
            if (y[i] != y[i - 1]) mpy[y[i]] = ++ ny;
        }

        for (int i = 1; i <= k; i ++)
            a[i].x = mpx[a[i].x], a[i].y = mpy[a[i].y];

        sort(a +1, a + 1 + k);

        for (int i = 1; i <= k; i ++)
        {
            f[i] = sum(a[i].y) + a[i].num;
            add(a[i].y, f[i]);
        }

        int ans = 0 ;
        for (int i = 1; i <= k; i ++) ans = max(ans,f[i]);

        cout << ans << endl;
    }

    signed main()
    {
        std::ios::sync_with_stdio(false);
        cin.tie(0);
        cout.tie(0);

        solve();

        return 0;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值