P3431 [POI2005]AUT-The Bus
题意
给你一个n×m的网格,告诉你了k个网格中的信息,(x,y)这个位置有p个人,现在有一辆公交这在(1, 1),它只能向右或者向上走,最终会走到终点,问你最后可能载多少人。
思路
离散化+DP+树状数组
离散化:首先观察给你的n和m的范围:
1
≤
n
≤
1
0
9
1\leq n \leq10^9
1≤n≤109,m的范围也是这样,所以我们想到了离散化,将坐标离散。
DP:公交车在走的时候肯定是从近走到远,那么对于我们要走到的位置,我们肯定要进行排序,我们不妨将x作为第一关键字进行排序,而y作为第二关键字进行排序,假设我们现在走到了k个点中的第i个点,那么f[i] = max(a[i].y) + a[i].num
,这里表示前面接到的人数加上当前位置的人数,然后这里在找max(a[i].y)
的时候,物品们可以用树状数组来进行维护。
树状数组:我们上面知道了,维护max(a[i].y)
可以采用树状数组来进行维护,那么我们树状数组记录的就是最大值了,而不是前缀和了。
ps:这里为什么f[k]不是最大值呢?首先,我们最终是要到达(n, m)这个点的,但是f[k]不一定是终点。但是我们最终都是要到达终点的。
#include <bits/stdc++.h>
using namespace std;
const int N = 500005;
int n, m, k;
int nx, ny;
int tr[N * 4];
int f[N];
int x[N], y[N];
map<int, int> mpx, mpy;
struct node
{
int x, y, num;
bool operator < (const node & t) const
{
return x == t.x ? y < t.y : x < t.x;
}
}a[N];
int lowbit(int x) { return x & -x; }
void add(int x, int k) { for (int i = x; i <= N; i += lowbit(i)) tr[i] = max(tr[i], k); }
int sum(int x)
{
int ans = 0;
for (int i = x; i ; i -= lowbit(i)) ans = max(ans, tr[i]);
return ans;
}
void solve()
{
cin >> n >> m >> k;
for (int i = 1; i <= k; i ++)
{
cin >> a[i].x >> a[i].y >> a[i].num;
x[i] = a[i].x, y[i] = a[i].y;
}
x[0] = y[0] = 1;
sort(x, x + 1 + k), sort(y, y + 1 + k);
mpx[x[0]] = ++nx, mpy[y[0]] = ++ny;
for (int i = 1; i <= k; i ++)
{
if (x[i] != x[i - 1]) mpx[x[i]] = ++ nx;
if (y[i] != y[i - 1]) mpy[y[i]] = ++ ny;
}
for (int i = 1; i <= k; i ++)
a[i].x = mpx[a[i].x], a[i].y = mpy[a[i].y];
sort(a +1, a + 1 + k);
for (int i = 1; i <= k; i ++)
{
f[i] = sum(a[i].y) + a[i].num;
add(a[i].y, f[i]);
}
int ans = 0 ;
for (int i = 1; i <= k; i ++) ans = max(ans,f[i]);
cout << ans << endl;
}
signed main()
{
std::ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
solve();
return 0;
}