Linux用到的命令

初学linux,记录一下。

  1. cdpwdls基本命令

  2. bash可直接进入`exec bash·也可

  3. 如何查看运行了几个程序用了多少gpu,nvtop,退出输入q,或者输入esc

  4. 如何kill掉后台运行的程序,kill -9 20442044是你想kill掉的程序名字

  5. screen -S lnmp创建一个名为lnmp的会话 CTRL+a+d临时离开,后台还在运行。screen -r 10042重新挂起,exit退出,这个语句超级好用。可以同时运行多个。

  6. 正在执行的程序,也就是前台进程
    Ctrl + C 终止
    Ctrl + D 退出
    Ctrl + S 挂起
    Ctrl + Q 解挂
    Ctrl + Z 强制结束

  7. 前后台进程的切换与控制
    (1)fg命令
    功能:将后台中的命令调至前台继续运行
    如果后台中有多个命令,可以先用jobs查看jobnun,然后用 fg %jobnum 将选中的命令调出。

    (2)Ctrl + z 命令
    功能:将一个正在前台执行的命令放到后台,并且处于暂停状态

    (3)bg命令
    功能:将一个在后台暂停的命令,变成在后台继续执行
    如果后台中有多个命令,可以先用jobs查看jobnum,然后用 bg %jobnum 将选中的命令调出继续

  8. 删除文件夹实例:
    rm -rf /var/log/httpd/access
    rm空格-rf空格/var/log/httpd/access
    将会删除/var/log/httpd/access目录以及其下所有文件、文件夹
    千万不要加上空格

  9. 删除文件使用实例:
    rm -f /var/log/httpd/access.log
    将会强制删除/var/log/httpd/access.log这个文件

  10. 查看服务器显卡nvidia-smi

NVIDIA-SMI 387.26                 Driver Version: 387.26                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:能耗|     显存利用率    Memory-Usage | GPU-Util 浮动GPU利用率 Compute M. |
|===============================+======================+======================|
|   0  TITAN Xp            Off  | 00000000:01:00.0 Off |                  N/A |
| 54%   84C    P2   149W / 250W |    939MiB / 12188MiB |     77%      Default |
+-------------------------------+----------------------+----------------------+
|   1  TITAN Xp            Off  | 00000000:02:00.0 Off |                  N/A |
| 31%   45C    P8    10W / 250W |    173MiB / 12189MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0     13255      C   python                                       929MiB |
|    1     13255      C   python                                       163MiB |
+-----------------------------------------------------------------------------+

GPU:GPU 编号; 
Name:GPU 型号; 
Persistence-M:持续模式的状态。持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这里显示的是off的状态; 
Fan:风扇转速,从0到100%之间变动; 
Temp:温度,单位是摄氏度; 
Perf:性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能(即 GPU 未工作时为P0,达到最大工作限度时为P12)。 
Pwr:Usage/Cap:能耗; 
**Memory Usage:显存使用率;** 
Bus-Id:涉及GPU总线的东西,domain:bus:device.function; 
Disp.A:Display Active,表示GPU的显示是否初始化; 
**Volatile GPU-Util:浮动的GPU利用率;** 
Uncorr. ECC:Error Correcting Code,错误检查与纠正; 
Compute M:compute mode,计算模式。
下方的 Processes 表示每个进程对 GPU 的显存使用率。
  1. 在终端执行程序时指定GPU
    CUDA_VISIBLE_DEVICES=1 python your_file.py
    这样在跑你的网络之前,告诉程序只能看到1号GPU,其他的GPU它不可见
    可用的形式如下:
CUDA_VISIBLE_DEVICES=1           Only device 1 will be seen
CUDA_VISIBLE_DEVICES=0,1         Devices 0 and 1 will be visible
CUDA_VISIBLE_DEVICES="0,1"       Same as above, quotation marks are optional
CUDA_VISIBLE_DEVICES=0,2,3       Devices 0, 2, 3 will be visible; device 1 is masked
CUDA_VISIBLE_DEVICES=""          No GPU will be visible
  1. 在Python代码中指定GPU
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
  1. 设置定量的GPU使用量
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.9 # 占用GPU90%的显存
session = tf.Session(config=config)
  1. 设置最小的GPU使用量,GPU动态增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)
  1. 先cd到这个文件夹然后再查看文件夹数
ls -l |grep "^-"|wc -l
  1. 解压tar文件先cd到文件夹中,再tar -xvf file.tar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值