PaddleX实现交通标志识别

一、PaddleX介绍

PaddleX简介:PaddleX是飞桨全流程开发工具,集飞桨核心框架、模型库、工具及组件等深度学习开发所需全部能力于一身,打通深度学习开发全流程,并提供简明易懂的Python API,方便用户根据实际生产需求进行直接调用或二次开发,为开发者提供飞桨全流程开发的最佳实践。目前,该工具代码已开源于GitHub,同时可访问PaddleX在线使用文档,快速查阅读使用教程和API文档说明。
PaddleX代码GitHub链接:https://github.com/PaddlePaddle/PaddleX/tree/develop
PaddleX文档链接:https://paddlex.readthedocs.io/zh_CN/latest/index.html
PaddleX官网链接:https://www.paddlepaddle.org.cn/paddle/paddlex

  1. PaddleX安装
    PaddleX有桌面版和集成库,这里面我们使用库进行开发
pip install paddlex -i https://mirror.baidu.com/pypi/simple

二、数据集准备

数据集我们采用VOC格式的,如果换成其他的,我们的数据接口格式就得修改。这个是目录
hk_det.zip
│ labels.txt
│ test_list.txt
│ train_list.txt
│ val_list.txt

├─Annotations
│ (存放.xml文件)

└─JPEGImages
(存放图片)

三、Faster RCNN目标检测

import os
# 选择使用0号卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

from paddlex.det import transforms
import paddlex as pdx

# 下载和解压昆虫检测数据集
insect_dataset = 'https://bj.bcebos.com/paddlex/datasets/insect_det.tar.gz'
pdx.utils.download_and_decompress(insect_dataset, path='./')

# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
    transforms.MixupImage(mixup_epoch=250),
    transforms.RandomDistort(),
    transforms.RandomExpand(),
    transforms.RandomCrop(),
    transforms.Resize(target_size=608, interp='RANDOM'),
    transforms.RandomHorizontalFlip(),
    transforms.Normalize(),
])

eval_transforms = transforms.Compose([
    transforms.Resize(target_size=608, interp='CUBIC'),
    transforms.Normalize(),
])

# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.VOCDetection(
    data_dir='insect_det',
    file_list='insect_det/train_list.txt',
    label_list='insect_det/labels.txt',
    transforms=train_transforms,
    shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
    data_dir='insect_det',
    file_list='insect_det/val_list.txt',
    label_list='insect_det/labels.txt',
    transforms=eval_transforms)

# 初始化模型,并进行训练
# 可使用VisualDL查看训练指标
# VisualDL启动方式: visualdl --logdir output/yolov3_darknet/vdl_log --port 8001
# 浏览器打开 https://0.0.0.0:8001即可
# 其中0.0.0.0为本机访问,如为远程服务, 改成相应机器IP
num_classes = len(train_dataset.labels)
model = pdx.det.YOLOv3(num_classes=num_classes, backbone='DarkNet53')
model.train(
    num_epochs=270,
    train_dataset=train_dataset,
    train_batch_size=8,
    eval_dataset=eval_dataset,
    learning_rate=0.000125,
    lr_decay_epochs=[210, 240],
    save_dir='output/yolov3_darknet53',
    use_vdl=True)

实验结果
在这里插入图片描述

PaddleX -- 飞桨全流程开发工具,以低代码的形式支持开发者快速实现产业实际项目落地。 PaddleX 集成飞桨智能视觉领域图像分类、目标检测、语义分割、实例分割任务能力,将深度学习开发全流程从数据准备、模型训练与优化到多端部署端到端打通,并提供统一任务API接口及图形化开发界面Demo。开发者无需分别安装不同套件,以低代码的形式即可快速完成飞桨全流程开发。 PaddleX 经过质检、安防、巡检、遥感、零售、医疗等十多个行业实际应用场景验证,沉淀产业实际经验,并提供丰富的案例实践教程,全程助力开发者产业实践落地。 安装: PaddleX提供三种开发模式,满足用户的不同需求: 1、Python开发模式: 通过简洁易懂的Python API,在兼顾功能全面性、开发灵活性、集成方便性的基础上,给开发者最流畅的深度学习开发体验。 前置依赖 paddlepaddle >= 1.8.4 python >= 3.6 cython pycocotools pip install paddlex -i https://mirror.baidu.com/pypi/simple 详细安装方法请参考PaddleX安装 2、Padlde GUI模式: 无代码开发的可视化客户端,应用Paddle API实现,使开发者快速进行产业项目验证,并为用户开发自有深度学习软件/应用提供参照。 前往PaddleX官网,申请下载PaddleX GUI一键绿色安装包。 前往PaddleX GUI使用教程了解PaddleX GUI使用详情。 PaddleX GUI安装环境说明 3、PaddleX Restful: 使用基于RESTful API开发的GUI与Web Demo实现远程的深度学习全流程开发;同时开发者也可以基于RESTful API开发个性化的可视化界面 前往PaddleX RESTful API使用教程 PaddleX 更新日志: v2.0.0.rc0 全面支持飞桨2.0动态图,更易用的开发模式 目标检测任务新增PP-YOLOv2, COCO test数据集精度达到49.5%、V100预测速度达到68.9 FPS 目标检测任务新增4.2MB的超轻量级模型PP-YOLO tiny 语义分割任务新增实时分割模型BiSeNetV2 C++部署模块全面升级  PaddleInference部署适配2.0预测库  支持飞桨PaddleDetection、PaddleSeg、PaddleClas以及PaddleX的模型部署  新增基于PaddleInference的GPU多卡预测  GPU部署新增基于ONNX的的TensorRT高性能加速引擎部署方式  GPU部署新增基于ONNX的Triton服务化部署方式 Tags:PaddleX源码包 PaddleX2.0 pp飞桨 PaddleX
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Magician0619

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值