【2024年认证杯小美赛D题】风能与太阳能发电厂 Matlab代码实现与完整论文

在这里插入图片描述在这里插入图片描述

摘要

在数据预处理中,由于原始数据集中存在时间戳错乱等情况,故首先对各个数据集的时间戳长度进行对齐。然后,基于三次样条插值的方法对缺失的数据进行填补。在填补过程中,由于部分数据缺失时间较长,故基于知识对插值数据进行修复。
在问题一中,我们的目标是研究风电场和太阳能发电厂发电量的波动模式,并在发电量出现显著下降或显著上升之前进行预测。为此,我们需要根据当前功率与过去30分钟平均功率的比值来衡量波动幅度,并根据这一指标提前做出预警。首先,本文建立一个LSTM对发电量进行预测。该问的主要任务是如何确定阈值𝑡,阈值t的质量将直接影响对后续对上升或下降的识别效果。阈值的选择需要在预测准确度和灵敏度之间做出平衡。若𝑡设置过小,可能会导致过多的假警报,即波动虽然存在但并不显著;若𝑡设置过大,则可能无法及时捕捉到实际的显著波动。通过设置多个阈值t进行预测,可通过准确性参数变化图确定最优阈值t。
在问题二中,在问题一的基础上混合建立BP-LSTM混合神经网络对发电量进行单独预测,并给予问题1中所确定的阈值对未来的发电量趋势进行识别。
在问题三中,需要设计一个调度策略,确保在功率波动较大时启动备用发电机,以平衡电网需求并保证供电稳定性。希望通过调整备用发电机的比例和调度时机,在尽量降低功率波动的同时,最大化系统的稳定性。首先,根据历史数据和预测模型,评估备用发电机的启停时机和启停概率。在设计备用发电机的比例时,需要权衡备用发电机的数量和系统的成本效益,在这里可以考虑建立一个双目标优化模型。同时考虑波动比例r和总发电量。决策变量设置为阈值t和备用发电机的选取。然后基于智能优化算法对优化模型进行求解,并基于帕累托优化对解进行选取。

一、问题重述

随着可再生能源(特别是风能和太阳能)的快速发展,越来越多的国家开始大规模利用这些能源发电。由于风能和太阳能的环境效益和低成本,它们的使用得到了广泛的认可。然而,这些能源的一个主要挑战在于其输出功率的高度波动性和不可控性,这使得它们很难稳定地融入现有的电力系统中。尤其是,在传统电网中接入风能和太阳能发电设施时,如何有效地应对其波动性成为了一个关键问题。为了解决这一问题,需要设计出合适的预测和调控方法,帮助电力公司和研究人员在短期和长期内准确预测风速和太阳辐照度,以便进行有效的发电量调度和备用管理。
提供的任务数据集包括一个风电场的12台风力发电机和一个太阳能发电厂的11座太阳能发电站在一个月内的发电量数据。任务的核心是根据这些数据开发一个数学模型,以应对以下三个问题:
问题一:发电量波动模式的研究 对于风电场和太阳能发电厂的发电量,首先需要对其波动模式进行研究。具体而言,要求在发电量出现显著波动(无论是显著下降还是显著上升)之前进行预测。这里,显著下降是指发电量较过去30分钟的平均值显著减少,至少提前5分钟预测;显著上升是指发电量较过去30分钟的平均值显著增加,至少提前2分钟预测。波动幅度的定义为,其中𝑝为当前时刻的发电功率,𝑞为过去30分钟的平均功率。当𝑘超过指定的阈值𝑡时,认为发生了显著的波动(下降或上升)。任务是选择适当的阈值𝑡并在此基础上提高预测的准确度。
问题二:短期发电量区间预测 由于数据以1赫兹的频率记录,下一步需要对未来1至120秒的发电量进行独立的区间预测。模型应能够对未来不同时间区间的发电量做出准确的预测,并对这些区间内的发电波动做出响应。
问题三:备用发电机调度方案的设计 一些风电场和太阳能发电厂采取了一种策略,即在发电量下降时启动备用发电机,在发电量上升时停用备用发电机。该策略的目标是设计一种调度方案,确保系统在指定的波动阈值𝑡内,能够以𝑟的概率保持稳定,防止发电量波动过大。问题是如何根据这一要求,确定总发电机中作为备用单元的比例,并规划何时启动或停用这些备用发电机,以最大化系统稳定性,并提高备用发电机的利用效率。

二、模型假设与符号说明

2.1 模型基本假设

1、数据完整性假设
假设所使用的风场数据集W1和太阳能数据集S1在经过数据预处理后,能够代表实际情况中的发电量波动特征。数据中的缺失值通过三次样条插值方法进行合理填补,确保插值结果符合实际物理规律。
2、时间序列假设
假设风电场和太阳能发电厂的发电量随时间变化呈现一定的时间序列特性,且历史数据能够有效预测未来发电量。
3、备用发电机启停假设
假设备用发电机的启停决策仅基于发电量的波动幅度k是否超过预设的阈值t。在功率波动较大时,备用发电机能够及时启动,以保证电网的供电稳定性。
4、环境因素假设
假设影响风电和太阳能发电的环境因素(如风速、太阳辐射等)在研究期间保持相对稳定,且其变化规律符合已知的物理模型。

2.2 符号说明

D
在这里插入图片描述

三、数据预处理

在这里插入图片描述

3.1 数据分析

题目提供了三个数据集,提供的数据集包含两部分:风场数据集W1和太阳能数据集S1。
风场数据集W1详细记录了来自一个4x4平方公里大小风场的数据。该风场配备了12台风力发电机,每台发电机的额定功率为2.x兆瓦。数据集涵盖了从2009年7月31日至2009年8月29日这一个月的时间段,记录了风力发电机运行期间的风速和功率输出。数据的采样频率为1赫兹,每秒记录一次数据。该数据集由德国的wpd windmanager GmbH公司提供。
太阳能数据集S1则关注太阳能辐照量的记录。数据来源于安装在德国奥尔登堡大学屋顶平台上的11个传感器。这些传感器在1993年6月1日至1993年6月30日这一个月内,以1赫兹的采样频率持续记录了太阳能辐照量。
在前期数据探索中发现数据集存在以下问题:
1、W1中存在大量的全空行。
2、数据时间戳与题目所述存在部分冲突。
3、存在大量的缺失值
在本文中,对上述问题的解决方式如下:
对于W1中的全空行和数据时间戳与题目所述存在部分冲突,首先清洗数据集中重复的行与时间戳异常的行。全空行数量如下表所示:
在这里插入图片描述
由上表可以发现,W1中两个表全空行的位置相对应。在处理后发现S1所包含的时间戳间隔并不足一个月,为了进行统一分析,截取W1中与S1长度一致的前半段进行后续分析。上述处理的伪代码如下所示:

在这里插入图片描述
在这里插入图片描述

四、问题一

在这里插入图片描述

4.1 基于LSTM长短期记忆循环神经网络的发电量预测

在数据预处理中,已对风电场和太阳能发电厂发电的波动模式进行了描述,在这一问中,基于LSTM循环神经网络对总发电量进行预测。
人类大脑的记忆具有持久性,可以通过过往的知识积累去理解学习当前的知识。而传统的神经网络并没有持久性,每一个神经元不能通过前面神经元的学习结果进行重新推断学习,为了解决这一问题科学家提出了RNN递归神经网络(Recurrent Neural Networks,RNN),并改进提出一种特殊的递归神经网络:LSTM长短期记忆网络。
LSTM可解决一般递归神经网络中普遍存在的长期依赖问题,有效的传递和表达长时间序列中的信息并且不会导致长时间前的有用信息被遗忘。同时,LSTM还可以解决RNN中的梯度消失/爆炸问题。
LSTM 也具有RNN的链状结构,但重复模块有不同的结构,是以四个神经网络层通过一种非常特殊的方式进行信息交互,如图7所示。

在这里插入图片描述

4.2 基于动态阈值的波动识别及最优阈值估计

五、问题二

在这里插入图片描述

完整论文

完整论文与代码,请看最后喔~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值