AVL树的简单实现

/**
 * 定义节点类
 * @param :
 * key-->节点的值
 * bf-->平衡因子
 * left-->左孩子   
 * right-->右孩子     
 * parent-->节点的双亲
 */
class Node{
    int key;
    int bf;
    Node left;
    Node right;
    Node parent;

    public Node(int key,Node parent){
        this.key=key;
        this.parent=parent;
    }
}

/**
 * 定义AVL树,实现简单的插入功能
 */
class AVLTree{
    
    //根节点
    public Node root;

    /**
     * 插入
     * @param :key 要插入的值
     */
    public void insert(int key){
        
        //如果根节点为空,直接插入成功返回
        if(null==root){
            root=new Node(key,null);
            return;
        }

        //找到要插入的位置
        Node parent=null;
        Node cur=root;
        while(null!=cur){
            if(key==cur.key){
                //不能有重复的元素
                throw new RuntimeException("有重复元素,插入失败");
            }else if(key<cur.key){
                parent=cur;
                cur=cur.left;
            }else{
                parent=cur;
                cur=cur.right;
            }
        }
        
        //插入
        cur=new Node(key,parent);
        if(key<parent.key){
            parent.left=cur;
        }else{
            parent.right=cur;
        }

        /**
         * 恢复调整
         * 计算平衡因子的算法采用的是节点的左子树高度减右子树的高度
         * cur为插入的新节点
         * parent为插入节点的双亲
         */
        while(true){
            
            //重新计算parent的平衡因子,如果在左子树中插入的就加1,如果在右子树中插入的就减1
            if(parent.left==cur){
                parent.bf++;
            }else{
                parent.bf--;
            }

            
            if(parent.bf==0){
                //parent的平衡因子为0,调整成功,可以直接退出
                break;
            }else if(parent.bf==2){
                //左子树比右子树高2,需要调整
                //如果cur.bf为1,是左左不平衡
                //如果cur.bf为-1,是左右不平衡
                if(cur.bf==1){
                    fixleftLeftBalance(parent);
                }else{
                    fixleftRightBalance(parent);
                }
                break;
            }else if(parent.bf==-2){
                //右子树比左子树高2,需要调整
                //如果cur.bf为-1,是右右不平衡
                //如果cur.bf为1,是右左不平衡
                if(cur.bf==-1){
                    fixrightRightBalance(parent);
                }else{
                    fixrightLeftBalance(parent);
                }
                break;
            }else if(parent==root){
                //调整到根节点,可以退出
                break;
            }
            
            //parent的平衡因子并没有被破坏,但是parent的高度改变,需要向上蔓延检查
            cur=parent;
            parent=parent.parent;
        }
    }

    /**
     * 左旋转
     * @param parent
     */
    private void leftRemote(Node parent){
        Node right=parent.right;
        Node leftOfRight=right.left;
        Node grandParent=parent.parent;

        right.parent=grandParent;
        if(grandParent==null){
            root=right;
        }else if(parent==grandParent.left){
            grandParent.left=right;
        }else{
            grandParent.right=right;
        }

        right.left=parent;
        parent.parent=right;

        parent.right=leftOfRight;
        if(leftOfRight!=null){
            leftOfRight.parent=parent;
        }
    }

    /**
     * 右旋转
     * @param parent
     */
    private void rightRemote(Node parent){
        Node left=parent.left;
        Node rightOfLeft=left.right;
        Node grandParent=parent.parent;

        left.parent=grandParent;
        if(grandParent==null){
            root=left;
        }else if(parent==grandParent.left){
            grandParent.left=left;
        }else{
            grandParent.right=left;
        }

        left.right=parent;
        parent.parent=left;

        parent.left=rightOfLeft;
        if(rightOfLeft!=null){
            rightOfLeft.parent=parent;
        }
    }

    /**
     * 右左失衡修复
     * @param parent
     */
    private void fixrightLeftBalance(Node parent) {
        Node right=parent.right;
        Node leftOfRight=right.left;
        rightRemote(right);;
        leftRemote(parent);

        if(leftOfRight.bf==1){
            right.bf=-1;
            right.bf=leftOfRight.bf=0;
        }else if(leftOfRight.bf==-1){
            parent.bf=1;
            right.bf=leftOfRight.bf=0;
        }else{
            leftOfRight.bf=parent.bf=right.bf=0;
        }
    }

    /**
     * 右右失衡修复
     * @param parent
     */
    private void fixrightRightBalance(Node parent) {
        Node cur=parent.right;
        rightRemote(parent);
        parent.bf=cur.bf=0;
    }

    /**
     * 左右失衡修复
     * @param parent
     */
    private void fixleftRightBalance(Node parent) {
        Node left=parent.left;
        Node rightOfLeft=left.right;
        leftRemote(left);
        rightRemote(parent);

        if(rightOfLeft.bf==1){
            parent.bf=-1;
            left.bf=rightOfLeft.bf=0;
        }else if(rightOfLeft.bf==-1){
            left.bf=1;
            parent.bf=rightOfLeft.bf=0;
        }else{
            left.bf=parent.bf=rightOfLeft.bf=0;
        }
    }

    /**
     * 左左失衡修复
     * @param parent
     */
    private void fixleftLeftBalance(Node parent) {
        Node cur=parent.left;
        rightRemote(parent);
        parent.bf=cur.bf=0;
    }

    /**
     * 是否包含某个元素
     * @param key
     */
    public boolean contains(int key){
        Node cur=root;
        while(null!=cur){
            if(key==cur.key){
                return true;
            }else if(key<cur.key){
                cur=cur.left;
            }else{
                cur=cur.right;
            }
        }

        return false;
    }
}
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值