目录
前言
本文主要讲解AVL树的插入,AVL树是在二叉搜索树的基础上,更加实用的一种数据结构,它拥有自平衡的特性,来保证它的搜索效率,本文就来探究它是如何实现自平衡的。
温馨提醒:本文所有代码中父节点我拼写成了perent,正确拼写应该是parent,不好意思,望周知(✪ω✪)。
一、AVL树的概念
- AVL 树是最先发明的自平衡二叉查找树,AVL是一颗空树,或者具备下列性质的二叉搜索树:它的左右子树都是AVL树,且左右子树的高度差的绝对值不超过1。AVL树是⼀颗高度平衡搜索二叉树, 通过控制高度差去控制平衡。
- AVL树得名于它的发明者G.M.Adelson-Velsky和E.M.Landis是两个前苏联的科学家,他们在1962 年的论文《Analgorithmfortheorganizationofinformation》中发表了它。
- AVL树实现这里我们引入一个平衡因子(balancefactor)的概念,每个结点都有一个平衡因子,任何结点的平衡因子等于右子树的高度减去左子树的高度,也就是说任何结点的平衡因子等于0/1/-1, AVL树并不是必须要平衡因子,但是有了平衡因子可以更方便我们去进行观察和控制树是否平衡, 就像一个风向标一样。
- 思考一下为什么AVL树是高度平衡搜索二叉树,要求高度差不超过1,而不是高度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,而是有些情况是做不到高度差是0的。比如一棵树是2个结点,4个结点等情况下,高度差最好就是1,无法做到高度差是0。如下图一棵AVL树,它的平衡因子绝对值不超过1.
- 反之,如果平衡因子绝对值大于1,就不是AVL树,如下图:
- AVL树整体结点数量和分布和完全二叉树类似,高度可以控制在logN,那么增删查改的效率也可以控制在O(logN),相比二叉搜索树有了本质的提升。效率计算如下图:
温馨提醒:本章节需要有二叉搜索树的基础,主页有哦,AVL树就是在二叉搜索树上增加了自平衡机制,调整子树高度差,保证查找效率。
二、AVL树的实现
1.基本框架
#pragma once
#include <assert.h>
template<class K, class V>
struct AVLTreeNode
{
pair<K, V> _kv;//k:v结构
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _perent;
int _bf;//平衡因子
AVLTreeNode(const pair<K, V>& kv)//构造
:_kv(kv)
, _left(nullptr)
, _right(nullptr)
, _perent(nullptr)
, _bf(0)
{}
};
template<class K, class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;//重命名
public:
private:
Node* _root = nullptr;//根节点
};
- AVL树的基本框架与搜索二叉树有点不同,主要是节点定义的区别:
- 节点的数据结构采用 key:value 结构,也就是使用pair保存数据。
- 节点采用三叉链结构,即有左孩子节点指针、右孩子节点指针、父节点指针。
- 增加成员变量 _bf,也就是平衡因子,用于检测每一个节点是否符合AVL树的特征(左右子树高度差不超过1)。
- 然后,AVL树的模版参数K,V,分别控制数据key:value的数据类型。类只有一个变量_root,也就是根节点。
温馨提醒:不要忘记了搜索二叉树的特性:对于不支持相等值的搜索二叉树,每个节点的左子树的数据全小于根节点,右子树的数据全大于根节点。
2.AVL树的插入
AVL树插入一个值的大概过程:
- 插入一个值按二叉搜索树规则进行插入。
- 新增结点以后,只会影响祖先结点的高度,也就是可能会影响部分祖先结点的平衡因子,所以更新从新增结点 -> 根结点路径上的平衡因子,实际中最坏情况下要更新到根节点,有些情况更新到中间就可以停止了,具体情况我们下面再详细分析。
- 更新平衡因子过程中没有出现问题,则插入结束。
- 更新平衡因子过程中出现不平衡,对不平衡子树旋转,旋转后调平衡的同时,本质降低了子树的高度,不会再影响上⼀层,所以插入结束。
我们先不管更新平衡因子和旋转,先把前面的代码写出来:
//插入
bool Insert(const pair<K, V>& kv)
{
//树为空
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
//树不为空
Node* cur = _root;
Node* perent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first)
{
perent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
perent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入
cur = new Node(kv);
if (kv.first > perent->_kv.first)
{
perent->_right = cur;
}
else
{
perent->_left = cur;
}
cur->_perent = perent;
//更新平衡因子
//...
return true;
}
- 这些就基本和搜索二叉树一致,这里就不赘述了。
- 需要注意的是插入新节点后记得更新新节点的父节点指针,毕竟是三叉链。
1.平衡因子更新:
更新原则:
- 平衡因子=右子树⾼度-左子树高度
- 只有子树高度变化才会影响当前结点平衡因子。
- 插入结点,会增加高度,所以新增结点在parent的右子树,parent的平衡因子++,新增结点在parent的左子树,parent平衡因子--。
- parent所在子树的高度是否变化决定了是否会继续往上更新。
我们先看一些实际情况:来了解什么时候可以停止向上更新平衡因子
(1)
- 如上图,新增节点13,在节点14的左边,所以14的平衡因子--,14的平衡因子变化就可能会引起其父节点平衡因子变化。因为14节点的平衡因子是由0变化到-1,所以它高度一定是加1,14的父节点是节点10,14在10的右边,所以14的平衡因子要++,此时对于节点10来说,平衡因子绝对值大于1了,需要旋转处理。(先不管如何旋转)
- 我们继续观察节点14,它的平衡因子原来是0,现在变成-1,说明它原来的子树高度差为0,插入一个节点后导致它高度差变化,所以,在插入节点操作中如果平衡因子变为-1,说明它一定是由0变化过来的,并且需要继续向上更新父节点的平衡因子。同理我们也能得出,如果插入操作导致平衡因子变为-1,说明它一定是从0变过来的,而且也需要继续向上更新平衡因子。
- 得出一条结论:更新后parent的平衡因子等于1或-1,更新前更新中parent的平衡因子变化为 0->1 或者 0->-1,说明更新前 parent 子树两边⼀样高,新增的插入结点后,parent所在的子树一边高一边低,parent所在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向上更新。
- 我们继续观察节点10,它的平衡因子变化是因为右子树新增一个节点,导致它的平衡因子从1变为2,此时它已经不满足AVL树了,需要进行旋转操作,我们先不管怎么旋转,我们先了解旋转的结果,旋转的目标有两个:1、把 parent子树旋转平衡。2、降低parent子树的高度,恢复到插入结点以前的高度。这样一来,相当于节点10的平衡因子没有发生变化,所以此时不需要向上更新平衡因子。同理当平衡因子从-1变为-2,我们也不需要向上更新父节点的平衡因子。
- 得出第二条结论:更新后parent的平衡因子等于2或-2,更新前更新中parent的平衡因子变化为1->2或者-1->-2,说明更新前parent子树一边高一边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理,旋转的目标有两个:1、把 parent子树旋转平衡。2、降低parent子树的高度,恢复到插入结点以前的高度。所以旋转后也不需要继续往上更新,插入结束。
(2)
- 如上图,这次插入节点-1,位于父节点1的左子树,所以父节点1的平衡因子--,此时因为节点1的平衡因子发生变化,所以需要继续向上更新,节点1的父节点3的平衡因子此时从1变为0,这说明新增节点导致节点3的左右子树高度平衡了,这时我们还需要继续向上更新平衡因子吗?答案是不用了,因为平衡因子变为0说明它一定是从-1或者1变过来的,变化前高度差为1,变化后高度差为0,这对于其父节点来说高度没变化,所以不需要继续向上更新平衡因子了。
- 得出结论:更新后parent的平衡因子等于0,更新中parent的平衡因子变化为-1->0或者1->0,说明更新前 parent 子树一边高一边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变,不会影响parent的父亲结点的平衡因子,更新结束。
(3)
- 插入节点7,节点6的平衡因子加1,节点3的平衡因子加1,根节点8的平衡因子也要加1。所以这就是最后一种情况也是最坏的情况,需要我们一路向上更新的根节点。
- 总结:如果平衡因子变为1或者-1,继续向上更新,如果一直到根节点平衡因子还是1或者-1,则停止更新。
2.总结:平衡因子更新停止条件
- 更新后parent的平衡因子等于0,更新中parent的平衡因子变化为-1->0或者1->0,说明更新前 parent 子树一边高一边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变,不会影响parent的父亲结点的平衡因子,更新结束。
- 更新后parent的平衡因子等于1或-1,更新前更新中parent的平衡因子变化为 0->1 或者 0->-1,说明更新前 parent 子树两边⼀样高,新增的插入结点后,parent所在的子树一边高一边低,parent所在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向上更新。
- 更新后parent的平衡因子等于2或-2,更新前更新中parent的平衡因子变化为1->2或者-1->-2,说明更新前parent子树一边高一边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理,旋转的目标有两个:1、把 parent子树旋转平衡。2、降低parent子树的高度,恢复到插入结点以前的高度。所以旋转后也不需要继续往上更新,插入结束。
- 如果平衡因子变为1或者-1,继续向上更新,如果一直到根节点平衡因子还是1或者-1,则停止更新。(最坏情况)
更新平衡因子代码:
//插入
bool Insert(const pair<K, V>& kv)
{
//树为空
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
//树不为空
Node* cur = _root;
Node* perent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first)
{
perent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
perent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入
cur = new Node(kv);
if (kv.first > perent->_kv.first)
{
perent->_right = cur;
}
else
{
perent->_left = cur;
}
cur->_perent = perent;
//更新平衡因子
while (perent)
{
if (cur == perent->_left)//插入节点位于左边
{
--perent->_bf;//平衡因子--
}
else//插入节点位于右边
{
++perent->_bf;//平衡因子++
}
if (perent->_bf == 0)//平衡因子等于0
{
break;//直接结束
}
else if (perent->_bf == -1 || perent->_bf == 1)//平衡因子需要继续向上更新
{
cur = perent;//更新cur为父节点
perent = perent->_perent;//更新父节点为父父节点
}
else if (perent->_bf == -2 || perent->_bf == 2)//不满足AVL树,需要旋转处理
{
//旋转
//...
break;//旋转完直接结束
}
else//平衡因子出现其它值,说明存在bug
{
assert(false);//说明出现bug,报错处理
}
}
return true;
}
- 以上就是插入节点时关于平衡因子更新的代码,应该不难理解。
- 接下来就是关于旋转怎么操作的问题了。
三、旋转
旋转的原则:
- 保持搜索树的规则
- 让旋转的树从不满足平衡变平衡,其次降低旋转树的高度,恢复到以前的高度(注意不是平衡因子)
旋转总共分为四种:左单旋/右单旋/左右双旋/右左双旋。
1.右单旋
- 以上就是一个完整的右单旋过程,看不懂没关系,我们一步一步来。
- 上图展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树, 是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种。
- 这里首先的问题就是为啥 a,b,c 要抽象成三个子树,而不是具体的节点,我们通过下面几个案例就会明白了。
(1)h=0
- 当 a,b,c 为h=0的三颗子树时,那么就只有两个节点,此时在 a 位置插入节点1,这时,根节点10的平衡因子变为-2,然后进行旋转操作,平衡了高度差。
- 所以当h=0时,右单旋只有一种情况。
(2)h=1
- h=1时,a,b,c就是一个节点的子树,此时也只有一种情况。
- 我们先不管如何旋转,先观察插入位置,插入位置都是最左边最高处。
(3)h=2
- h=2,h=2的子树有3种情况,如上图中的 X,Y,Z。
- 这里需要注意,子树a只能是X这一种情况,子树b,c可以是这三种任意一种,为什么呢?因为是在子树a插入新节点,然后需要保证影响到根节点10以此触发旋转操作,如果a树为Y,Z一种,那么新插入节点后a要么平衡要么不平衡,a平衡不会影响到根节点的平衡因子,a不平衡则自身会触发旋转操作,最终也不会影响根节点的平衡因子。所以a只能是X。
- 通过计算,h=2时,一共有36种情况,而这些情况都可以经过右单旋恢复平衡。
(4)h=3
- h=3时,高度为3的子树就有非常多的情况了,可以分为上图中X和y-C,y-C表示最后一层四个叶子结点保留任意1个/任意2个/任意3个的子树。
- 同h=2,这里a子树也只能是X这种情况,计算下来,一共有5400种情况,以至于画图时不得不使用抽象的子树a,b,c来表示。
- 所以你应该明白了为什么a,b,c要使用抽象的子树表示吧,就是因为有无数种情况,无数种情况都可以抽象成a,b,c来表示。
理解了a,b,c的含义,我们接下来观察旋转如何实现:
- 如图,在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从-1变成-2,10为根的树左右高度差超过1,违反平衡规则。10为根的树左边太高了,需要往右边旋转,控制两棵树的平衡。
- 旋转核心步骤,因为5 < b子树的值 < 10,将b变成10的左子树,10变成5的右子树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵树的高度恢复到了插入之前的h+2,符合旋转原则。如果插入之前根节点为10的整棵树是一个局部子树,旋转后不会再影响上一层,插入结束了。
- 简单点说,为什么可以这样旋转,因为b和10节点都大于节点5,所以b和10节点都能作为5的右子树。因为b一开始是10的左边,所以让b直接成为10的左子树。最后整棵树的高度恢复了到了h+1,这样就平衡了高度差。
- 我们通过观察上面h=0,1,2,3的案例,就能发现,只要出现根节点的左孩子平衡因子变为-1,导致根节点平衡因子变为-2,就可以使用右单旋进行调整了。
(1)右单旋的代码实现:
//右单旋
void RotateR(Node* perent)
{
Node* subL = perent->_left;//左孩子
Node* subLR = subL->_right;//左孩子的右孩子
//旋转过去
perent->_left = subLR;
subL->_right = perent;
Node* ppNode = perent->_perent;//记录父父节点
//更新父节点指针
if (subLR)
subLR->_perent = perent;
perent->_perent = subL;
if (perent == _root)//判断根节点
{
_root = subL;
subL->_perent = nullptr;
}
else
{
if (ppNode->_left == perent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_perent = ppNode;
}
//更新平衡因子
subL->_bf = perent->_bf = 0;
}
代码解释:
- 因为右单旋受影响的节点有根节点、根节点的左孩子、左孩子的右子树。所以如上图,我们将根节点命名parent,左孩子命名subL,左孩子右子树命名subLR
- 首先第一步就是将b(subLR)旋转过去作为根节点(parent)的左子树,然后将parent点作为左孩子(subL)的右孩子。
- 然后因为是三叉链,所以我们还需要更新subLR和parent的父节点指针,这里需要注意的是subLR可能为0,如h=0时,所以我们需要if判断一下。
- 其次就是根节点的更新,因为可能是局部子树也可能是整棵树,所以在更新父节点指针前,先保存parent的父节点指针ppNode。我们先判断parent是不是根节点,是:我们就更新subL为新根节点然后令subL的父节点指针为空,因为根节点没有父节点。否:说明是局部子树,所以我们先判断parent是ppNode的哪个孩子节点,然后调整ppNode的该孩子节点指向subL,最后令subL的父节点指针指向ppNode。这样就完成了根节点的更新。
- 最后就是更新平衡因子了。我们根据上面和上上面的图就能得知,平衡因子受影响的只有parent和subL,a,b,c子树是作为整体不受影响,并且,parent和subL的平衡因子经过旋转后就一定为0,这一点通过图就能直观的得出来。
完成右单旋代码后,我们就可以更新一下插入函数了:
//插入
bool Insert(const pair<K, V>& kv)
{
//树为空
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
//树不为空
Node* cur = _root;
Node* perent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first)
{
perent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
perent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入
cur = new Node(kv);
if (kv.first > perent->_kv.first)
{
perent->_right = cur;
}
else
{
perent->_left = cur;
}
cur->_perent = perent;
//更新平衡因子
while (perent)
{
if (cur == perent->_left)//插入节点位于左边
{
--perent->_bf;//平衡因子--
}
else//插入节点位于右边
{
++perent->_bf;//平衡因子++
}
if (perent->_bf == 0)//平衡因子等于0
{
break;//直接结束
}
else if (perent->_bf == -1 || perent->_bf == 1)//平衡因子需要继续向上更新
{
cur = perent;//更新cur为父节点
perent = perent->_perent;//更新父节点为父父节点
}
else if (perent->_bf == -2 || perent->_bf == 2)//不满足AVL树,需要旋转处理
{
//旋转
if (perent->_bf == -2 && cur->_bf == -1)//左边高
{
RotateR(perent);//右单旋
}
//剩余情况
//...
break;//旋转完直接结束
}
else
{
assert(false);//说明出现bug,报错处理
}
}
return true;
}
- 右旋转,顾名思义就是朝右边旋转。
- 条件:纯粹的左边高,观察上面的图,也就是根节点(parent)的左孩子节点(cur)的左子树高(a),导致根节点平衡因子超了。
- 注意:根节点的左孩子节点的左子树,也就是a,a的形状是不确定的,所以只关注cur的平衡因子。
- 所以右旋转条件写成代码就是:perent->_bf == -2 && cur->_bf == -1
2.左单旋
理解了右单旋,左单旋就好说了。
- 如上图展示的是10为根的树,有a/b/c抽象为三棵高度为h的子树(h>=0),a/b/c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a/b/c是高度为h的子树, 是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上面左旋类似。
- 在a子树中插入一个新结点,导致a子树的高度从h变成h+1,不断向上更新平衡因子,导致10的平衡因子从1变成2,10为根的树左右高度差超过1,违反平衡规则。10为根的树右边太高了,需要往左边旋转,控制两棵树的平衡。
- 旋转核心步骤,因为10 < b子树的值 <15,将b变成10的右子树,10变成15的左子树,15变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h+2,符合旋转原则。如果插入之前10整棵树是一个局部子树,旋转后不会再影响上一层,插入结束了。最后树的高度依旧恢复到了h+1
- 总体上说就是右单旋的反方向版,受影响的3个位置:根节点(parent)、右孩子节点(subR)、右孩子的左子树(subRL)。
(1)左单旋代码实现
//左单旋
void RotateL(Node* perent)
{
Node* subR = perent->_right;
Node* subRL = subR->_left;
//旋转过去
perent->_right = subRL;
subR->_left = perent;
Node* ppNode = perent->_perent;//父父节点
//更新父节点指针
if (subRL)
subRL->_perent = perent;
perent->_perent = subR;
//判断父父节点
if (perent == _root)
{
_root = subR;
subR->_perent = nullptr;
}
else
{
if (ppNode->_left == perent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_perent = ppNode;
}
subR->_bf = perent->_bf = 0;
}
- 和右单旋一样,先将b旋转过去,将subRL变成parent的右子树,将parent变为subR的左孩子,随后更新父节点指针,然后更新根节点,最后更新parent和subR的平衡因子。
完成左单旋后可以更新一下插入函数:
//插入
bool Insert(const pair<K, V>& kv)
{
//树为空
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
//树不为空
Node* cur = _root;
Node* perent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first)
{
perent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
perent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入
cur = new Node(kv);
if (kv.first > perent->_kv.first)
{
perent->_right = cur;
}
else
{
perent->_left = cur;
}
cur->_perent = perent;
//更新平衡因子
while (perent)
{
if (cur == perent->_left)//插入节点位于左边
{
--perent->_bf;//平衡因子--
}
else//插入节点位于右边
{
++perent->_bf;//平衡因子++
}
if (perent->_bf == 0)//平衡因子等于0
{
break;//直接结束
}
else if (perent->_bf == -1 || perent->_bf == 1)//平衡因子需要继续向上更新
{
cur = perent;//更新cur为父节点
perent = perent->_perent;//更新父节点为父父节点
}
else if (perent->_bf == -2 || perent->_bf == 2)//不满足AVL树,需要旋转处理
{
//旋转
if (perent->_bf == -2 && cur->_bf == -1)//左边高
{
RotateR(perent);//右单旋
}
else if (perent->_bf == 2 && cur->_bf == 1)//右边高
{
RotateL(perent);//左单旋
}
//其他情况...
break;//旋转完直接结束
}
else
{
assert(false);//说明出现bug,报错处理
}
}
return true;
}
- perent->_bf == 2 && cur->_bf == 1,也就是只有parent平衡因子为2并且subR(cur)平衡因子为1的情况,也就是纯粹的右边高,这时使用左单旋。
3.左右双旋
(1)问题引入
- 通过上面两图可以看到,左边高时,如果插入位置不是在a子树,而是插入在b子树,b子树高度从h变成h+1,引发旋转,右单旋无法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的是纯粹的左边高,但是插入在b子树中,10为跟的子树不再是单纯的左边高,对于10是左边高,但是对于5是右边高,这时需要用两次旋转才能解决。
- 判断是不是纯粹的左边高或者右边高,根据图,从新插入节点出发到根节点,如果是一条直线那么就是纯粹的一边高,如果是折线就不是。
(2)解决方法
首先我们子树的表示就直接用抽象图,前面已经解释过了,其实抽象子树最好一点就是其平衡因子不会发生变化,因为是当成一个整体移动。
- 第一步:将子树b拆分,拆分成一个具体节点(比5大比10小)和两棵抽象子树e和f
- 第二步:节点5为首的左子树,单独对这个左子树进行左单旋,将整棵树变为纯粹的左边高。
- 第三步:对整棵树进行右单旋,注意此时需要将上图中节点5的子树和子树f视为两颗抽象子树
因为先进行左单旋,后进行右单旋,所以取名左右双旋
(3)平衡因子更新
其实旋转过程很简单,只需要调用上面已经写好的单旋函数即可。真正难点是更新平衡因子,因为子树b被拆分成了e和f,那么新插入节点就有可能位于e也可能位于f,根据上图,e和f最终成为了根节点的左右孩子节点的右左子树。所以就会影响到根节点和左右孩子节点的平衡因子。
- 第一种:插入在e
- 此时parent=1,subL=0,subLR=0
- 第二种:插入在f
- 此时parent=0,subL=-1,subLR=0
- 其实还有第三种:b子树高度h=0,也就是b就是新插入节点
- 此时parent=0,subL=0,subLR=0
- 现在问题是如何判断插入位置?我们可以根据subLR的平衡因子进行判断,subLR=-1说明左边插入,subLR=1说明右边插入,subLR=0说明自己就是新增节点。
(5)左右双旋代码实现
//左右双旋
void RotateLR(Node* perent)
{
Node* subL = perent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;//单旋前先记录平衡因子
RotateL(perent->_left);//先对左子树进行左单旋
RotateR(perent);//对整体进行右单旋
if (bf == -1)//左边高
{
perent->_bf = 1;
subL->_bf = 0;
subLR->_bf = 0;
}
else if (bf == 1)//右边高
{
perent->_bf = 0;
subL->_bf = -1;
subLR = 0;
}
else if (bf == 0)//自己就是新增节点
{
perent->_bf = 0;
subL->_bf = 0;
subLR = 0;
}
else//如果真走到这里说明有bug
{
assert(false);
}
}
- 首先需要注意的是,调用单旋会把平衡因子更新为0,所以需要提前记录subLR的平衡因子。
- 然后,既然调用单旋会把平衡因子更新为0,那为什么还需要写bf==0的情况,这其实是一个好习惯,因为写了bf==0的情况那么无论单旋函数会不会将平衡因子变为0,都不会影响双旋函数更新平衡因子,这就是降低耦合性。
最后,我们继续完善一下插入函数代码中的旋转条件:
//插入
bool Insert(const pair<K, V>& kv)
{
//树为空
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
//树不为空
Node* cur = _root;
Node* perent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first)
{
perent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
perent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入
cur = new Node(kv);
if (kv.first > perent->_kv.first)
{
perent->_right = cur;
}
else
{
perent->_left = cur;
}
cur->_perent = perent;
//更新平衡因子
while (perent)
{
if (cur == perent->_left)//插入节点位于左边
{
--perent->_bf;//平衡因子--
}
else//插入节点位于右边
{
++perent->_bf;//平衡因子++
}
if (perent->_bf == 0)//平衡因子等于0
{
break;//直接结束
}
else if (perent->_bf == -1 || perent->_bf == 1)//平衡因子需要继续向上更新
{
cur = perent;//更新cur为父节点
perent = perent->_perent;//更新父节点为父父节点
}
else if (perent->_bf == -2 || perent->_bf == 2)//不满足AVL树,需要旋转处理
{
//旋转
if (perent->_bf == -2 && cur->_bf == -1)//左边高
{
RotateR(perent);//右单旋
}
else if (perent->_bf == 2 && cur->_bf == 1)//右边高
{
RotateL(perent);//左单旋
}
else if (perent->_bf == -2 && cur->_bf == 1)//左的中间高
{
RotateLR(perent);//左右双旋
}
//剩余情况...
break;//旋转完直接结束
}
else
{
assert(false);//说明出现bug,报错处理
}
}
return true;
}
- 根据图就能发现,需要左右双旋的条件就是,subL的平衡因子=1.
- 也就是:perent->_bf == -2 && cur->_bf == 1
4.右左双旋
同理,我们先对右子树进行右单旋,再对整树进行左单旋。然后分三种情况讨论平衡因子的更新
- 跟左右双旋类似,下面我们将a/b/c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进⼀步展开为12和左子树高度为h-1的e和f子树,因为我们要对b的父亲15为旋转点进行右单旋,右单旋需要动b树中的右子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察12的平衡因子不同,这里我们要分三个场景讨论。
- 场景1:h>=1时,新增结点插入在e子树,e子树高度从h-1变为h并不断更新12->15->10平衡因子,引发旋转,其中12的平衡因子为-1,旋转后10和12平衡因子为0,15平衡因子为1。
- 场景2:h>=1时,新增结点插入在f子树,f子树高度从h-1变为h并不断更新12->15->10平衡因子, 引发旋转,其中12的平衡因子为1,旋转后15和12平衡因子为0,10平衡因子为-1。
- 场景3:h==0时,a/b/c都是空树,b自己就是⼀个新增结点,不断更新15->10平衡因子,引发旋转,其中12的平衡因子为0,旋转后10和12和15平衡因子均为0
(1)右左双旋代码实现
//右左双旋
void RotateRL(Node* perent)
{
Node* subR = perent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;//先记录平衡因子
RotateR(perent->_right);//先右单旋
RotateL(perent);//再左单旋
if (bf == -1)
{
perent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
else if (bf == 1)
{
perent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else if (bf == 0)
{
perent->_bf = 0;
subR->_bf = 0;
subRL->_bf = 0;
}
else
{
assert(false);
}
}
(2)插入函数最终版
//插入
bool Insert(const pair<K, V>& kv)
{
//树为空
if (_root == nullptr)
{
_root = new Node(kv);
return true;
}
//树不为空
Node* cur = _root;
Node* perent = nullptr;
while (cur)
{
if (kv.first > cur->_kv.first)
{
perent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_kv.first)
{
perent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入
cur = new Node(kv);
if (kv.first > perent->_kv.first)
{
perent->_right = cur;
}
else
{
perent->_left = cur;
}
cur->_perent = perent;
//更新平衡因子
while (perent)
{
if (cur == perent->_left)//插入节点位于左边
{
--perent->_bf;//平衡因子--
}
else//插入节点位于右边
{
++perent->_bf;//平衡因子++
}
if (perent->_bf == 0)//平衡因子等于0
{
break;//直接结束
}
else if (perent->_bf == -1 || perent->_bf == 1)//平衡因子需要继续向上更新
{
cur = perent;//更新cur为父节点
perent = perent->_perent;//更新父节点为父父节点
}
else if (perent->_bf == -2 || perent->_bf == 2)//不满足AVL树,需要旋转处理
{
//旋转
if (perent->_bf == -2 && cur->_bf == -1)//左边高
{
RotateR(perent);//右单旋
}
else if (perent->_bf == 2 && cur->_bf == 1)//右边高
{
RotateL(perent);//左单旋
}
else if (perent->_bf == -2 && cur->_bf == 1)//左的中间高
{
RotateLR(perent);//左右双旋
}
else if (perent->_bf == 2 && cur->_bf == -1)//右的中间高
{
RotateRL(perent);//右左双旋
}
else
{
assert(false);
}
break;//旋转完直接结束
}
else
{
assert(false);//说明出现bug,报错处理
}
}
return true;
}
最后稍微总结一下双旋的思想:
- 由于插入位置不是纯粹的一边高,所以先针对插入节点的那棵子树,使用单旋将其调整为纯粹的一边高,最终对整体再进行一次单旋即可。
四、AVL树的查找
查找逻辑和普通的二叉搜索树一样,这里不再赘述
//查找
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (key > cur->_kv.first)
{
cur = cur->_right;
}
else if (key < cur->_kv.first)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
五、AVL树的平衡检测
主要是检查我们写的代码有没有bug
- 为此,我们需要实现中序遍历:
void _InOrder(Node* root)//中序遍历 { if (root == nullptr) return; _InOrder(root->_left); cout << root->_kv.first << ":" << root->_kv.second << endl; _InOrder(root->_right); }
- 当然,和搜索二叉树一样,为了方便使用,选择封装一层,将上面的中序遍历代码放到类的private私有成员中。
- 再将以下封装代码放在类的public共用成员中:
//中序遍历 void InOrder() { _InOrder(_root); }
- 这样直接调用无参的中序遍历就可以使用了,避免了传参。
(1)简单的初步测试
测试代码:
#include <iostream>
#include "AVLTree.h"
using namespace std;
void TestAVLTree1()
{
AVLTree<int, int> t;
//常规测试用例:
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
//特殊的需要双旋场景的测试用例:
// int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
//插入
for (auto e : a)
{
t.Insert({ e,e });
}
//中序遍历
t.InOrder();
}
int main()
{
TestAVLTree1();
return 0;
}
运行结果:
- 很明显,数据都是从小到大排序的,符号二叉搜索树的特性,说明大方向没问题。
- 但是现在还不能完全保证代码正确,因为有序只能说明是搜索树,不能说明树是平衡的。
- 为此我们还需要写一个程序检查树是否平衡。
(2)平衡检测
- 首先,判断一棵搜索树是否平衡,我们能使用平衡因子判断吗?答案是不能的,因为平衡因子本身就可能是错的,毕竟平衡因子是我们自己进行更新的。
- 这时,我们就需要使用朴实的方法进行检测,如上图,我们需要计算每棵子树的高度,使用高度差来判断树是否平衡,比如上面根节点8,我们先计算出它的左右子树高度,判断高度差的绝对值是否大于2,顺带可以与节点8的平衡因子进行比较判断平衡因子本身是否正确。
- 使用这种方法判断每个节点的左右子树。
实现方法:
- 我们首先需要实现计算高度的函数Height,这个在树的章节详细解释过。
int _Height(Node* root)//计算高度 { if (root == nullptr) return 0; int leftHeight = _Height(root->_left); int rightHeight = _Height(root->_right); return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1; }
- 然后就是判断平衡的IsBalanceTree函数,这个就是通过计算的左右子树高度,递归来判断树是否平衡,很好理解。比较好的一点就是可以指出出现异常的节点。
bool _IsBalanceTree(Node* root)//判断是否为AVL树 { //空树也是AVL树 if (nullptr == root) return true; //计算pRoot结点的平衡因子:即pRoot左右子树的高度差 int leftHeight = _Height(root->_left); int rightHeight = _Height(root->_right); int diff = rightHeight - leftHeight; // 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 // pRoot平衡因子的绝对值超过1,则⼀定不是AVL树 if (abs(diff) >= 2) { cout << root->_kv.first << "高度差异常" << endl; return false; } if (root->_bf != diff) { cout << root->_kv.first << "平衡因子异常" << endl; return false; } //pRoot的左和右如果都是AVL树,则该树⼀定是AVL树 return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right); }
- 这两个函数我们都可以套一层使用,避免传参。
//判断是否为AVL树 bool IsBalanceTree() { return _IsBalanceTree(_root); } //计算高度 int Height() { return _Height(_root); }
测试方法:
我们使用十万个随机值进行插入,然后判断树是否平衡。
void TestAVLTree2()
{
const int N = 100000;//测试用例个数
vector<int> v;
v.reserve(N);//提前扩容
srand(time(0));//设置随机数种子
for (size_t i = 0; i < N; i++)//生成随机值
{
v.push_back(rand() + i);
}
AVLTree<int, int> t;
int begin1 = clock();//记录时间
for (auto e : v)
{
t.Insert({ e,e });//插入随机值
}
int end1 = clock();
cout << "Insert: " << end1 - begin1 << "(毫秒)" << endl;
if (t.IsBalanceTree())//判断平衡
{
cout << "平衡,是AVL树" << endl;
}
else
{
cout << "不平衡,不是AVL树" << endl;
}
cout << "Hight: " << t.Height() << "(层)" << endl;//计算树的高度
cout << "Size: " << t.Size() << "(个)" << endl;//计算树的大小
int begin2 = clock();//测试一下查找效率
for (size_t i = 0; i < N; i++)
{
t.Find(rand() + i);
}
int end2 = clock();
cout << "Find: " << end2 - begin2 << "(毫秒)" << endl;
}
补充一下size方法:
public:
//计算大小
int Size()
{
return _Size(_root);
}
private:
int _Size(Node* root)
{
if (root == nullptr)
return 0;
int left = _Size(root->_left);
int right = _Size(root->_right);
return left + right + 1;
}
运行结果:
- 你可能发现树的大小只有6万多个,这是因为我们实现的AVL树不支持重复数据。
六、AVL树的删除
关于删除部分,本文章没有做出详解,原因是它比插入部分更加复杂,像笔试面试一般也不会考:
删除大致分为以下三步:
- 按照二叉搜索树树的方式进行删除(主页有)
- 更新平衡因子
- 旋转
有兴趣的可以参考:《殷人昆 数据结构:用面向对象方法与C++语言描述》中有讲解
总结
以上就是本文的全部内容了,感谢支持!