AVL树的实现


一、AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。

因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

AVL的平衡不一定需要平衡因子,使用平衡因子只是控制平衡的一种方式。如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 logN (2为底),搜索时间复杂度O(log(N))。

二、AVL树的操作

2.1 AVL节点的定义

使用三叉链,多存储一个父节点,方便控制平衡,KV模型,存储一个pair。

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;

	int _bf; // 平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr),
		_right(nullptr),
		_parent(nullptr),
		_kv(kv),
		_bf(0)
	{}
};
template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	AVLTree():_root(nullptr)
	{}
private:
	Node* _root;
};

2.2 AVL的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入
过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了
AVL树的平衡性
cur插入后,pParent的平衡因子一定需要调整,在插入之前,parent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:

  1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可
  2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可

此时:parent的平衡因子可能有三种情况:0,正负1, 正负2

  1. 如果arent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
  2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
  3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理.
bool Insert(const pair<K, V>& kv){
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kv.first > cur->_kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else return false; // 已经有了
		}
		// 插入结点
		cur = new Node(kv);
		if (kv.first > parent->_kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		// 更新平衡因子
		// 1. 更新从新增结点到根节点的路径上的结点的平衡因子的值
		// 2. 如果出现不平衡需要旋转
		while (parent) // 每次判别父结点是否平衡
		{
			if (cur == parent->_left)
				parent->_bf--;
			else
				parent->_bf++;
			
			// 父节点的平衡因子改变,需要做不同的处理
			if (parent->_bf == 0)
				break;
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 出现不平衡需要旋转
				if (parent->_bf == 2 && cur->_bf == 1)
					RotateL(parent);// 左旋
				else if (parent->_bf == -2 && cur->_bf == -1)
					RotateR(parent); // 右旋
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					// 先右后左
					RotateRL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					// 先左后右
					RotateLR(parent);
				}
				else
					assert(false); // 报错
				break;
			}
			else
				return false; 
		}

	}

2.3 AVL树的旋转

2.3.1 左单旋转

在这里插入图片描述
代码实现

void RotateL(Node* ptr){
		// ptr->bf == 2 && ptr->_right->bf == 1 --- 左单旋 
		Node* subR = ptr->_right;
		Node* subRL = subR->_left;

		ptr->_right = subRL;
		if (subRL){  // subRL存在
			subRL->_parent = ptr;
		}
		
		subR->_left = ptr;
		if (ptr == _root ){ // ptr为根节点
			subR->_parent = nullptr;
			ptr->_parent = subR;
			_root = subR;
		} 
		else { 
			Node* ptrParent = ptr->_parent;
			subR->_parent = ptrParent;
			if (ptrParent->_left == ptr) {
				ptrParent->_left = subR;
			}
			else {
				ptrParent->_right = subR;
			}
			ptr->_parent = subR;
		}
		// 修改平衡因子
		ptr->_bf = subR->_bf = 0;
	}

2.3.2 右单旋转

右旋其实是左旋的镜像。

在这里插入图片描述

void RotateR(Node* ptr) {
		Node* subL = ptr->_left;
		Node* subLR = subL->_right;

		ptr->_left = subLR;
		if (subLR) {
			subLR->_parent = ptr;
		}

		subL->_right = ptr;
		if (ptr == _root) {
			ptr->_parent = subL;
			subL->_parent = nullptr;
			_root = subL;
		}
		else {
			Node* ptrParent = ptr->_parent;
			subL->_parent = ptrParent;
			if (ptrParent->_left == ptr) {
				ptrParent->_left = subL;
			}
			else {
				ptrParent->_right = subL;
			}
			ptr->_parent = subL;
		}

		ptr->_bf = subL->_bf = 0;
	}

2.3.3 先左后右双旋转

判断是否需要两次旋转,就看发生不平衡点的左右子树的平衡因子,与父节点的平衡因子符合相反(即高低的方向相反),这是需要使用双旋。

父节点为 -2,左子树为 1 ------- 先左旋再右旋
父节点为 2, 右子树位 -1 ------ 先右旋再左旋
先旋的都是子树,后旋的是父节点
在这里插入图片描述
在这里插入图片描述
代码很简单,但是需要调整最终旋转后的ptr的平衡因子值。

void RotateLR(Node* ptr)
{
	Node* subL = ptr->_left;
	Node* subLR = subL->_right;
	// 如果需要这样选择,那么ptr结点和sub结点的平衡因子是固定的,只有subLR是不确定的,需要判断
	// 这里记录下插入某一个结点后,subLR的平衡因子
	int bf = subLR->_bf;

	// 先左后右, 由于这两种情况的调整后,三个结点的平衡因子都被置为0,但不一定都是0,需要调整
	RotateL(subL);
	RotateR(ptr);

	// 调整平衡因子, 只会有这三种情况
	if (bf == -1) { // 图中所示情况
		ptr->_bf = 1;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else if (bf == 1) { // 新节点在左边
		ptr->_bf = 0;
		subL->_bf = -1;
		subLR->_bf = 0;
	}
	else if (bf == 0) { // 两边高度相等
		ptr->_bf = 0;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else {
		assert(false); // 说明早就错了
	}
}

2.3.3 先右后左双旋转

在这里插入图片描述

在这里插入图片描述

void RotateRL(Node* ptr)
{
	Node* subR = ptr->_right;
	Node* subRL = ptr->_left;
	int bf = subRL->_bf;
	// 先右后左
	RotateR(subR);
	RotateL(ptr);

	if (bf == 1) { //图中情况
		ptr->_bf = -1;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == -1) { // 加在了左边
		ptr->_bf = 0;
		subR->_bf = 1;
		subRL->_bf = 0;
	}
	else if (bf == 0) { // 都等高
		ptr->_bf = 0;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else {
		assert(false); // 说明早就错了
	}
}

2.4 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  2. 验证其为平衡树
    每个节点子树高度差的绝对值不超过1,并且节点的平衡因子是否计算正确
void InOrder()
	{
		_InOrder(_root);
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_kv.first << " : " << root->_kv.second << endl;
		_InOrder(root->_right);
	}
	bool IsBalance()
	{
		return _IsBalance(_root);
	}
	int Height(Node* root)
	{
		if (root == nullptr) return 0;
		return max(Height(root->_left), Height(root->_right)) + 1;
	}
	bool _IsBalance(Node* root)
	{
		if (root == nullptr)
			return true;
		// 检查左右高度差
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);

		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << "现在是:" << root->_bf << endl;
			cout << root->_kv.first << "应该是:" << rightHeight - leftHeight << endl;
			return false;
		}
		return abs(rightHeight - leftHeight) < 2
			&& _IsBalance(root->_left)
			&& _IsBalance(root->_right);
	}
void TestAVLTree()
{
	AVLTree<int, int> t;
	
	//int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 }; // 测试是否为二叉搜索树
	int a[] = {16, 3, 7, 2, 5, 4}; // 测试先左后右双旋,平衡因子的正确性
	// int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 }; // 测试先右后左双旋的平衡因子是否正确
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
		cout << "Insert" << e << ":" << t.IsBalance() << endl;
	}
	t.InOrder();
	cout << t.IsBalance() << endl;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
AVL树是一种自平衡二叉搜索树,可以用来实现字典类型。在实现字典类型时,我们可以将键值对存储在AVL树的节点中,其中键作为节点的关键字,值则作为节点的附加数据。 下面是一个简单的AVL树实现字典类型的Python代码: ```python class AVLNode: def __init__(self, key, val): self.key = key self.val = val self.left = None self.right = None self.height = 1 class AVLTree: def __init__(self): self.root = None def insert(self, key, val): self.root = self._insert(self.root, key, val) def _insert(self, node, key, val): if not node: return AVLNode(key, val) if key < node.key: node.left = self._insert(node.left, key, val) elif key > node.key: node.right = self._insert(node.right, key, val) else: node.val = val node.height = 1 + max(self._height(node.left), self._height(node.right)) balance = self._get_balance(node) if balance > 1 and key < node.left.key: return self._right_rotate(node) if balance < -1 and key > node.right.key: return self._left_rotate(node) if balance > 1 and key > node.left.key: node.left = self._left_rotate(node.left) return self._right_rotate(node) if balance < -1 and key < node.right.key: node.right = self._right_rotate(node.right) return self._left_rotate(node) return node def search(self, key): node = self._search(self.root, key) if node: return node.val else: return None def _search(self, node, key): if not node: return None if key == node.key: return node if key < node.key: return self._search(node.left, key) else: return self._search(node.right, key) def _height(self, node): if not node: return 0 return node.height def _get_balance(self, node): if not node: return 0 return self._height(node.left) - self._height(node.right) def _left_rotate(self, node): new_root = node.right node.right = new_root.left new_root.left = node node.height = 1 + max(self._height(node.left), self._height(node.right)) new_root.height = 1 + max(self._height(new_root.left), self._height(new_root.right)) return new_root def _right_rotate(self, node): new_root = node.left node.left = new_root.right new_root.right = node node.height = 1 + max(self._height(node.left), self._height(node.right)) new_root.height = 1 + max(self._height(new_root.left), self._height(new_root.right)) return new_root ``` 在这个实现中,我们定义了AVLNode类来表示AVL树的节点。每个节点包含一个键、一个值、左右子指针以及节点高度。AVLTree类是AVL树实现,包含了插入、搜索、左旋和右旋等基本操作。 在insert操作中,我们首先按照二叉搜索树的规则找到要插入的位置。然后更新节点高度,并计算平衡因子。如果平衡因子超过了1或-1,我们就需要进行旋转来保持AVL树的平衡。 在search操作中,我们按照二叉搜索树的规则搜索键值对应的节点,并返回其值。 这个AVL树实现可以用来实现字典类型。我们可以将键值对存储在AVL树的节点中,并通过搜索操作来查找键对应的值。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

s_persist

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值