poj2635

大致题意:

给定一个大数K,K是两个大素数的乘积的值。

再给定一个int内的数L

问这两个大素数中最小的一个是否小于L,如果小于则输出这个素数。


高精度求模+同余模定理

 

1、  Char格式读入K。把K转成千进制Kt,同时变为int型。

把数字往大进制转换能够加快运算效率。若用十进制则耗费很多时间,会TLE。

千进制的性质与十进制相似。

例如,把K=1234567890转成千进制,就变成了:Kt=[  1][234][567][890]。

为了方便处理,我的程序是按“局部有序,全局倒序”模式存放Kt

即Kt=[890][567][234][1  ]  (一个中括号代表一个数组元素)

2、  素数打表,把10^6内的素数全部预打表,在求模时则枚举到小于L为止。

注意打表不能只打到100W,要保证素数表中最大的素数必须大于10^6,否则当L=100W且K为GOOD时,会因为数组越界而RE,这是因为越界后prime都是负无穷的数,枚举的while(prime[pMin]<L)循环会陷入死循环

3、  高精度求模。

主要利用Kt数组和同余模定理。

例如要验证123是否被3整除,只需求模124%3

但当123是一个大数时,就不能直接求,只能通过同余模定理对大数“分块”间接求模

具体做法是:

先求1%3 = 1

再求(1*10+2)%3 = 0

再求 (0*10+4)% 3 = 1

那么就间接得到124%3=1,这是显然正确的

而且不难发现, (1*10+2)*10+4 = 124

这是在10进制下的做法,千进制也同理,*10改为*1000就可以了

#include<cstdio>
#include<cstring>
using namespace std;
#define M 1001100
char s[110];
int n[M],N,l,ans,pn;
int p[M];
bool is_p[M];

void prime()  //素数打表
{
	memset(is_p,0,sizeof(is_p));
	int i,j;
	pn=0;
	for(i=2;i<M;i++)
	{
		if(!is_p[i])
		{
			p[pn++]=i;
			for(j=i+i;j<M;j+=i)
			{
				is_p[j]=true;
			}
		}
	}
}

void init()  //转为千进制
{
	N=0;
	int len=strlen(s)-1;
	while(len>=0)
	{
		int t=3;
		int o=1;
		n[N]=0;
		while(t--&&len>=0)
		{
			n[N]=n[N]+o*(s[len--]-'0');
			o*=10;
		}
		N++;
	}
}

bool bigMode(int *ar,int len,int p)  //大数取模
{
	int ret=0;
	int i;
	for(i=N-1;i>=0;i--)
	{
		ret=(ret*1000+ar[i])%p;
	}
	if(ret==0)
	{
		return true;
	}
	return false;
}

void cal()
{
	init();
	int i;
	for(i=0;i<pn;i++)
	{
		if(p[i]<l)
		{
			if( bigMode(n,N,p[i]) )
			{
				ans=p[i];
				break;
			}
		}
		else
		{
			ans=p[i];
			break;
		}
	}
}

void answer()
{
	if(ans<l)
	{
		printf("BAD %d\n",ans);
	}
	else
	{
		printf("GOOD\n");
	}
}
int main()
{
	prime();
	while(~scanf("%s%d",s,&l))
	{
		if(l==0)
		{
			break;
		}
		cal();
		answer();
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值