大致题意:
给定一个大数K,K是两个大素数的乘积的值。
再给定一个int内的数L
问这两个大素数中最小的一个是否小于L,如果小于则输出这个素数。
高精度求模+同余模定理
1、 Char格式读入K。把K转成千进制Kt,同时变为int型。
把数字往大进制转换能够加快运算效率。若用十进制则耗费很多时间,会TLE。
千进制的性质与十进制相似。
例如,把K=1234567890转成千进制,就变成了:Kt=[ 1][234][567][890]。
为了方便处理,我的程序是按“局部有序,全局倒序”模式存放Kt
即Kt=[890][567][234][1 ] (一个中括号代表一个数组元素)
2、 素数打表,把10^6内的素数全部预打表,在求模时则枚举到小于L为止。
注意打表不能只打到100W,要保证素数表中最大的素数必须大于10^6,否则当L=100W且K为GOOD时,会因为数组越界而RE,这是因为越界后prime都是负无穷的数,枚举的while(prime[pMin]<L)循环会陷入死循环
3、 高精度求模。
主要利用Kt数组和同余模定理。
例如要验证123是否被3整除,只需求模124%3
但当123是一个大数时,就不能直接求,只能通过同余模定理对大数“分块”间接求模
具体做法是:
先求1%3 = 1
再求(1*10+2)%3 = 0
再求 (0*10+4)% 3 = 1
那么就间接得到124%3=1,这是显然正确的
而且不难发现, (1*10+2)*10+4 = 124
这是在10进制下的做法,千进制也同理,*10改为*1000就可以了
#include<cstdio>
#include<cstring>
using namespace std;
#define M 1001100
char s[110];
int n[M],N,l,ans,pn;
int p[M];
bool is_p[M];
void prime() //素数打表
{
memset(is_p,0,sizeof(is_p));
int i,j;
pn=0;
for(i=2;i<M;i++)
{
if(!is_p[i])
{
p[pn++]=i;
for(j=i+i;j<M;j+=i)
{
is_p[j]=true;
}
}
}
}
void init() //转为千进制
{
N=0;
int len=strlen(s)-1;
while(len>=0)
{
int t=3;
int o=1;
n[N]=0;
while(t--&&len>=0)
{
n[N]=n[N]+o*(s[len--]-'0');
o*=10;
}
N++;
}
}
bool bigMode(int *ar,int len,int p) //大数取模
{
int ret=0;
int i;
for(i=N-1;i>=0;i--)
{
ret=(ret*1000+ar[i])%p;
}
if(ret==0)
{
return true;
}
return false;
}
void cal()
{
init();
int i;
for(i=0;i<pn;i++)
{
if(p[i]<l)
{
if( bigMode(n,N,p[i]) )
{
ans=p[i];
break;
}
}
else
{
ans=p[i];
break;
}
}
}
void answer()
{
if(ans<l)
{
printf("BAD %d\n",ans);
}
else
{
printf("GOOD\n");
}
}
int main()
{
prime();
while(~scanf("%s%d",s,&l))
{
if(l==0)
{
break;
}
cal();
answer();
}
return 0;
}