39. 组合总和
题目链接:
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
求解思路:
回溯三部曲
- 递归函数参数:数组、目标和、当前和、循环起始编号(对于一个集合来求组合的话,就需要startIndex;如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex)
- 终止条件:sum大于target(在剪枝过程中体现)或是sum等于target(此时收集结果)
- 单层搜索的逻辑:从startIndex开始搜索candidates数组(注意本题元素可重复选取,在回溯的过程中不需要i+1)
剪枝和注意事项
- 剪枝过程体现在for循环中
- 注意数组是需要排序的
代码:
class Solution {
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex){
if (sum == target){
result.push_back(path);
return;
}
// 剪枝,如果 sum + candidates[i] > target 就终止遍历
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++){
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i); // 是i而不是i+1,表示可以重复读取当前的数
sum -= candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end()); // 注意需要排序
backtracking(candidates, target, 0, 0);
return result;
}
};
40.组合总和II
题目链接:
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
求解思路:
与上一题的区别
- 本题 candidates 中的每个数字在每个组合中只能使用一次
- 本题数组candidates的元素是有重复的,而上一题是无重复元素的数组
回溯三部曲
- 递归函数参数:新增了used,一个bool类型的vector,用于记录数字是否被使用过
- 递归终止条件:sum大于或等于target(大于体现在for循环的定义中)
- 单层搜索的逻辑:如果当前元素和前一个元素相等,且上一个元素未被使用过,则for循环中continue(去重的逻辑)
去重逻辑的图解
代码:
class Solution {
private:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used){
if (sum == target){
result.push_back(path);
return;
}
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++){
// used数组,用于记录每个数是否被用过
// 要对同一树层使用过的元素进行跳过
if (i > 0 && candidates[i] == candidates[i-1] && used[i-1] == false){
continue;
}
sum += candidates[i];
path.push_back(candidates[i]);
used[i] = true;
backtracking(candidates, target, sum, i+1, used);
sum -= candidates[i];
path.pop_back();
used[i] = false;
}
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool> used(candidates.size(), false);
sort(candidates.begin(), candidates.end()); // 排序
backtracking(candidates, target, 0, 0, used);
return result;
}
};
131.分割回文串
题目链接:
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
求解思路:
回溯三部曲
- 递归函数参数:待分割的字符串s和起始编号startIndex
- 终止条件:startIndex(即切割线)大于等于s的大小
- 单层搜索的逻辑:截取子串 [startIndex, i] 并判断是否为回文串,如果是则加入path,不是则跳过循环
题目难点
- 切割问题可以抽象为组合问题
- 如何模拟那些切割线
- 切割问题中递归如何终止
- 在递归循环中如何截取子串
- 如何判断回文
代码:
class Solution {
private:
// 判断是否为回文
bool isPalindrome(const string& s, int start, int end){
for (int i = start, j = end; i < j; i++, j--){
if (s[i] != s[j])
return false;
}
return true;
}
vector<string> path;
vector<vector<string>> result;
void backtracking(const string& s, int startIndex){
// 如果起始位置大于等于s的大小,说明找到了一组分割的方案
if (startIndex >= s.size()){
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++){
// 是回文子串
if (isPalindrome(s, startIndex, i)){
// 获取[startIndex,i]在s中的子串
// substr()可指定起始位置和字符串长度,复制一个字符串的一部分
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
}
else
continue;
backtracking(s, i+1);
path.pop_back();
}
}
public:
vector<vector<string>> partition(string s) {
backtracking(s, 0);
return result;
}
};