(超简单、超易懂、超详细)算法精讲(十八):迪杰斯特拉算法

如果你也喜欢C#开发或者.NET开发,可以关注我,我会一直更新相关内容,并且会是超级详细的教程,只要你有耐心,基本上不会有什么问题,如果有不懂的,也可以私信我加我联系方式,我将毫无保留的将我的经验和技术分享给你,不为其他,只为有更多的人进度代码的世界,而进入代码的世界,最快捷和最容易的就是C#.NET,准备好了,就随我加入代码的世界吧!
一、算法简介

        迪杰斯特拉算法(Dijkstra's Algorithm)是一种用于解决单源最短路径问题的算法。它通过不断更新从起点到每个顶点的最短距离来找到起点到目标顶点之间的最短路径。

        算法的基本思想是,从起点开始,依次扩展离起点最近的顶点,更新其邻接顶点的最短距离。首先,将起点到自身的最短距离初始化为0,其余顶点的最短距离初始化为正无穷。然后,从起点开始,选择离起点最近的顶点作为当前顶点,更新当前顶点的邻接顶点的最短距离。重复这个过程,直到所有顶点都被遍历过。最后,得到每个顶点到起点的最短距离。

        算法的主要步骤:   

                1、初始化起始节点到其他节点的路径长度为无穷大,起始节点的路径长度为0。

                2、找到当前路径中最短的节点,并将其标记为已遍历。

                3、计算当前节点到相邻节点的路径长度,并更新路径长度和路径。

                4、重复步骤2和步骤3,直到遍历了所有的节点。

                5、返回起始节点到其他节点的最短路径长度。

        迪杰斯特拉算法的时间复杂度是O(V^2),其中V是顶点的数量。它可以应用于有权图,但是对于有负权边的图,迪杰斯特拉算法不能正确工作,因为它依赖于贪心策略。

二、为什么要学习迪杰斯特拉算法:

        2.1 实际应用广泛:

        迪杰斯特拉算法常用于网络路由、地图导航、交通调度等领域,可以帮助我们找到从一个点到另一个点的最短路径,并且能够考虑到不同路径上的节点权重(如路程、时间等)。

        2.2 算法简单高效:

        迪杰斯特拉算法使用了贪心策略,在每一步都选择当前最优的节点,因此能够保证得到最短路径。同时,它的时间复杂度为O(V^2),其中V为节点的数量,相对较低,适用于大部分实际场景。

        2.3 算法思想易于理解:

        迪杰斯特拉算法通过维护一个距离表和一个已访问节点集合,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值