描述
现有一两行三列的表格如下:
A B C
D E F
把1、2、3、4、5、6六个数字分别填入A、B、C、D、E、F格子中,每个格子一个数字且各不相同。每种不同的填法称为一种布局。如下:
1 3 5
2 4 6
布局1
2 5 6
4 3 1
布局2
定义α变换如下:把A格中的数字放入B格,把B格中的数字放入E格,把E格中的数字放入D格,把D格中的数字放入A格。
定义β变换如下:把B格中的数字放入C格,把C格中的数字放入F格,把F格中的数字放入E格,把E格中的数字放入B格。
问:对于给定的布局,可否通过有限次的α变换和β变换变成下面的目标布局:
1 2 3
4 5 6
目标布局
输入
本题有多个测例,每行一个,以EOF为输入结束标志。每个测例的输入是1到6这六个数字的一个排列,空格隔开,表示初始布局ABCDEF格中依次填入的数字。
输出
每个输出占一行。可以转换的,打印Yes;不可以转换的,打印No。
输入样例
1 3 5 2 4 6
2 5 6 4 3 1
输出样例
No
Yes
提示
第二个示例即布局2的一种转换方法:αααβαα
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
int code[6];
int cnt;
typedef struct node{
int a[6];
};
bool judge(int a[]){
int flag=1,i;
for(i=0;i<6;i++)
{
if(a[i]!=i+1){
flag = 0;
break;
}
}
if(flag) return true;
else return false;
}
void alfa(int a[]){
int t = a[3];
a[3] = a[4];
a[4] = a[1];
a[1] = a[0];
a[0] = t;
}
void beta(int a[])
{
int t = a[4];
a[4] = a[5];
a[5] = a[2];
a[2] = a[1];
a[1] = t;
}
int bfs(node st)
{
queue<node> Q;
node now,next;
Q.push(st);
while(!Q.empty()){
now = Q.front();
cnt++;
if(judge(now.a)){
return 1;
}
if(cnt>100){
return 0;
}
alfa(now.a);
Q.push(now);
beta(now.a);
Q.push(now);
Q.pop();
}
}
int main()
{
node st;
while(scanf("%d%d%d%d%d%d",&st.a[0],&st.a[1],&st.a[2],&st.a[3],&st.a[4],&st.a[5])!=EOF){
cnt = 0;
if(bfs(st)) printf("Yes\n");
else printf("No\n");
}
return 0;
}