六数码问题

描述

现有一两行三列的表格如下:

A B C
D E F

把1、2、3、4、5、6六个数字分别填入A、B、C、D、E、F格子中,每个格子一个数字且各不相同。每种不同的填法称为一种布局。如下:

1 3 5
2 4 6
布局1

2 5 6
4 3 1
布局2

定义α变换如下:把A格中的数字放入B格,把B格中的数字放入E格,把E格中的数字放入D格,把D格中的数字放入A格。
定义β变换如下:把B格中的数字放入C格,把C格中的数字放入F格,把F格中的数字放入E格,把E格中的数字放入B格。

问:对于给定的布局,可否通过有限次的α变换和β变换变成下面的目标布局:

1 2 3
4 5 6
目标布局

输入

本题有多个测例,每行一个,以EOF为输入结束标志。每个测例的输入是1到6这六个数字的一个排列,空格隔开,表示初始布局ABCDEF格中依次填入的数字。

输出

每个输出占一行。可以转换的,打印Yes;不可以转换的,打印No。

输入样例

1 3 5 2 4 6
2 5 6 4 3 1

输出样例

No
Yes

提示

第二个示例即布局2的一种转换方法:αααβαα

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

int code[6];
int cnt;

typedef struct node{
    int a[6];
};

bool judge(int a[]){
    int flag=1,i;
    for(i=0;i<6;i++)
    {
        if(a[i]!=i+1){
            flag = 0;
            break;
        }
    }
    if(flag) return true;
    else return false;
}

void alfa(int a[]){
    int t  = a[3];
    a[3] = a[4];
    a[4] = a[1];
    a[1] = a[0];
    a[0] = t;
}

void beta(int a[])
{
    int t  = a[4];
    a[4] = a[5];
    a[5] = a[2];
    a[2] = a[1];
    a[1] = t;
}

int bfs(node st)
{
    queue<node> Q;
    node now,next;
    Q.push(st);
    while(!Q.empty()){
        now = Q.front();
        cnt++;
        if(judge(now.a)){
            return 1;
        }
        if(cnt>100){
            return 0;
        }
        alfa(now.a);
        Q.push(now);
        beta(now.a);
        Q.push(now);
        Q.pop();

    }
}

int main()
{
    node st;
    while(scanf("%d%d%d%d%d%d",&st.a[0],&st.a[1],&st.a[2],&st.a[3],&st.a[4],&st.a[5])!=EOF){
        cnt = 0;
        if(bfs(st)) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值