描述
在科学计算中经常要计算矩阵的乘积。矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。若A是一个p×q的矩阵,B是一个q×r的矩阵,则其乘积C=AB是一个p×r的矩阵。计算C=AB总共需要p×q×r次乘法。
现在的问题是,给定n个矩阵{A1,A2,…,An}。其中Ai与Ai+1是可乘的,i=1,2,…,n-1。
要求计算出这n个矩阵的连乘积A1A2…An最少需要多少次乘法。
输入
输入数据的第一行是一个整树n(0 < n <= 10),表示矩阵的个数。
接下来的n行每行两个整数p,q( 0 < p,q < 100),分别表示一个矩阵的行数和列数。
输出
输出一个整数:计算连乘积最少需要乘法的次数。
输入样例
10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11
输出样例
438
#include <iostream>
#include <cstdio>
#include <cstring>
#define MAXSIZE 1000
using namespace std;
int A[MAXSIZE];
int mul[MAXSIZE][MAXSIZE];
int loc[MAXSIZE][MAXSIZE];
int main()
{
int n,t,i,r,k,j;
scanf("%d",&n);
memset(mul,0,sizeof(mul));
for(i=0;i<n;i++)
{
scanf("%d%d",&A[i],&t);
}
A[n] = t;
for(r= 1;r<n;r++){
for(i =1;i<n;i++){
j = i + r;
mul[i][j] = mul[i+1][j]+A[i-1]*A[i]*A[j];
loc[i][j] = i;
for(k = i + 1; k < j; k++){
t = mul[i][k]+mul[k + 1][j] + A[i - 1]*A[k]*A[j];
if(t < mul[i][j]){
mul[i][j] = t;
loc[i][j] = k;
}
}
}
}
printf("%d\n",mul[1][n]);
return 0;
}