计算矩阵连乘积

描述

在科学计算中经常要计算矩阵的乘积。矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。若A是一个p×q的矩阵,B是一个q×r的矩阵,则其乘积C=AB是一个p×r的矩阵。计算C=AB总共需要p×q×r次乘法。
现在的问题是,给定n个矩阵{A1,A2,…,An}。其中Ai与Ai+1是可乘的,i=1,2,…,n-1。
要求计算出这n个矩阵的连乘积A1A2…An最少需要多少次乘法。

输入

输入数据的第一行是一个整树n(0 < n <= 10),表示矩阵的个数。
接下来的n行每行两个整数p,q( 0 < p,q < 100),分别表示一个矩阵的行数和列数。

输出

输出一个整数:计算连乘积最少需要乘法的次数。

输入样例

10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11

输出样例

438

#include <iostream>
#include <cstdio>
#include <cstring>
#define MAXSIZE 1000

using namespace std;

int A[MAXSIZE];
int mul[MAXSIZE][MAXSIZE];
int loc[MAXSIZE][MAXSIZE];

int main()
{
    int n,t,i,r,k,j;
    scanf("%d",&n);
    memset(mul,0,sizeof(mul));
    for(i=0;i<n;i++)
    {
        scanf("%d%d",&A[i],&t);
    }
    A[n] = t;
    for(r= 1;r<n;r++){
        for(i =1;i<n;i++){
            j = i + r;
            mul[i][j] = mul[i+1][j]+A[i-1]*A[i]*A[j];
            loc[i][j] = i;
            for(k = i + 1; k < j; k++){
                t = mul[i][k]+mul[k + 1][j] + A[i - 1]*A[k]*A[j];
                if(t < mul[i][j]){
                    mul[i][j] = t;
                    loc[i][j] = k;
                }
            }
        }
    }
    printf("%d\n",mul[1][n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值