计算矩阵连乘

在科学计算中经常要计算矩阵的乘积。矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。若A是一个p×q的矩阵,B是一个q×r的矩阵,则其乘积C=AB是一个p×r的矩阵。由该公式知计算C=AB总共需要pqr次的数乘。

现在的问题是,给定n个矩阵{A1,A2,…,An}。其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要求计算出这n个矩阵的连乘积A1A2…An,最少的乘法次数。

主要代码:

算法参考如下:

 

void MatrixChain(int *p,int n,int **m,int **s)

{        for (int i = 1; i <= n; i++)

               m[i][i] = 0;

        for (int r = 2; r <= n; r++)

           for (int i = 1; i <= n - r+1; i++) {

              int j=i+r-1;

              m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j];

              s[i][j] = i;

              for (int k = i+1; k < j; k++) {

                 int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

                 if (t < m[i][j]) { m[i][j] = t; s[i][j] = k;}

              }   

      } 

  }

 

void traceback(int i,int j,int **s)

{

   if(i==j)

             cout<<"A"<<i;

      else if (i==j-1)

             cout<<"(A"<<i<<"A"<<j<<")";

      else

      {

             cout<<"(";

             traceback(i,s[i][j],s);

             traceback(s[i][j]+1,j,s);

             cout<<")";

      }

 }

阅读更多
换一批

没有更多推荐了,返回首页