计算机考研408每日一题 day25

这篇博客汇总了程序员必备的知识点,包括数据结构中的栈和队列特性,计算机网络中的纠错编码如CRC和汉明码,操作系统中的进程调度算法,以及计算机组成原理中的寻址范围计算。通过每日习题解析,帮助读者巩固这些核心概念。

408的四门科目不谈最重要的数据结构与算法,其他的比如OS的进程管理和内存管理,计网中老生常谈的TCP/IP模型,计组中数据的表示等等,每一个都是一名合格的程序员应该重点掌握的内容。

所以:虽然你不一定考研,但跟着做题加深理解总没错的

每天都会更新2~3篇直到追上进度(上次一天更了10篇),欢迎关注我或者我的专栏。

习题来源于@王道微博

解析都是我自己写的,如有问题或错漏烦请评论告知。

🌴数据结构

栈和队列的共同特点是____(中国科学院大学2012)

A. 只允许在端点处插入和删除元素
B. 都是先进后出
C. 都是先进先出
D. 没有共同点

答案及解析

答案:A

🔊 常识:栈是先进后出表,队列是先进先出表,两者都只允许在端点处插入和删除元素。

🌾计算机网络

下面哪种编码是纠错(Error-Correcting)编码___(北京邮电大学2011)

A. 曼彻斯特编码
B. 循环冗余检验(CRC)编码
C. 汉明(Hamming)编码
D. 差分曼彻斯特编码

答案及解析

答案:BC

🔊 又是多选,没想到吧🤣

根据纠错理论,编码最小码距越大,其检测错误的位数就越大,纠正错误的位数也越大,海明码就是基于这个理论提出的一种具有纠错能力的编码。

而CRC码基于线性编码理论,也可以进行纠错。

🌿操作系统

下列关于进程调度算法的论述中哪个是不正确的_

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mancuoj

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值