parallelStream与stream效率比较

结论
  • parallel线程不安全
  • parallel的效率,因为是多线程,默认线程数量是计算器处理器的数量
代码
public class StreamTest {

    @Test
    public void streamVs(){
        List<Integer> list1 = new ArrayList<>(10000);
        List<Integer> list2 = new ArrayList<>(10000);
        List<Integer> list3 = new ArrayList<>(10000);
        Lock lock = new ReentrantLock();

        IntStream.range(0, 10000).forEach(list1::add);

        IntStream.range(0, 10000).parallel().forEach(list2::add);

        IntStream.range(0, 10000).parallel().forEach(i -> {
            lock.lock();
            try {
                list3.add(i);
            }finally {
                lock.unlock();
            }
        });

        System.out.println("串行执行的大小:" + list1.size());
        System.out.println("并行执行的大小:" + list2.size());
        System.out.println("加锁并行执行的大小:" + list3.size());
    }

    @Test
    public void streamVs2(){
        List<Person> persons = constructPersons();
        doFor(persons);
        doStream(persons);
        doParallelStream(persons);
    }

    /**
     * 构造数据
     *
     * @return
     */
    public List<Person> constructPersons() {

        List<Person> persons = new ArrayList<Person>();
        for (int i = 0; i < 5; i++) {
            Person p = new Person(i, "name" + i, "sex" + i, i);
            persons.add(p);
        }
        return persons;
    }

    /**
     * for
     *
     * @param persons
     */
    public void doFor(List<Person> persons) {
        long start = System.currentTimeMillis();

        for (Person p : persons) {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
            }
            //System.out.println(p.name);
        }

        long end = System.currentTimeMillis();
        System.out.println("doFor cost:" + (end - start));
    }

    /**
     * 顺序流
     *
     * @param persons
     */
    public void doStream(List<Person> persons) {
        long start = System.currentTimeMillis();

        persons.stream().forEach(x -> {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
            }
            //System.out.println(x.name);
        });

        long end = System.currentTimeMillis();
        System.out.println("doStream cost:" + (end - start));
    }

    /**
     * 并行流
     *
     * @param persons
     */
    public void doParallelStream(List<Person> persons) {

        long start = System.currentTimeMillis();

        persons.parallelStream().forEach(x -> {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
            }
            //System.out.println(x.name);
        });

        long end = System.currentTimeMillis();

        System.out.println("doParallelStream cost:" + (end - start));
    }

}

class Person {
    int    id;
    String name;
    String sex;
    float  height;

    public Person(int id, String name, String sex, float height) {
        this.id = id;
        this.name = name;
        this.sex = sex;
        this.height = height;
    }
}

测试截图
串行执行的大小:10000
并行执行的大小:7219
加锁并行执行的大小:10000
doFor cost:5012
doStream cost:5073
doParallelStream cost:2013
`CountDownLatch` 和 `parallelStream` 都是 Java 并发编程中的工具,但它们的使用场景和实现机制不同,因此在执行效率上也有差异。以下是两者的对比及影响执行效率的因素。 --- ### CountDownLatch 的工作原理 `CountDownLatch` 是一个同步工具类,它允许一个或多个线程等待其他线程完成操作。其核心是一个计数器,当计数器减为 0 时,所有等待的线程会被释放。 - **主要用途**:用于协调多个线程之间的操作。 - **典型场景**:主线程等待一组子线程完成任务后再继续执行。 ```java import java.util.concurrent.CountDownLatch; public class CountDownLatchExample { public static void main(String[] args) throws InterruptedException { int threadCount = 10; CountDownLatch latch = new CountDownLatch(threadCount); for (int i = 0; i < threadCount; i++) { new Thread(() -> { try { // 模拟任务 Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } finally { latch.countDown(); // 计数器减 1 } }).start(); } // 主线程等待所有子线程完成 latch.await(); System.out.println("All threads have finished."); } } ``` #### 执行效率的影响因素 1. **线程切换开销**:`CountDownLatch` 使用显式线程池或直接创建线程,每次线程切换会有一定的性能开销。 2. **锁竞争**:`CountDownLatch` 内部依赖于 AQS(AbstractQueuedSynchronizer),可能存在锁竞争问题。 3. **任务粒度**:如果每个线程的任务非常轻量级,那么线程管理的开销可能会超过任务本身的执行时间。 --- ### parallelStream 的工作原理 `parallelStream` 是 Java 8 引入的一个并发工具,基于 Fork/Join 框架实现。它将集合数据划分为多个子任务,并行处理后合并结果。 - **主要用途**:对集合数据进行并行处理。 - **典型场景**:需要对大量数据进行复杂的计算操作。 ```java import java.util.stream.IntStream; public class ParallelStreamExample { public static void main(String[] args) { long startTime = System.currentTimeMillis(); IntStream.rangeClosed(1, 1_000_000).parallel().forEach(i -> { // 模拟耗时操作 Math.sqrt(i); }); long endTime = System.currentTimeMillis(); System.out.println("Execution time: " + (endTime - startTime) + " ms"); } } ``` #### 执行效率的影响因素 1. **Fork/Join 框架**:`parallelStream` 使用 Fork/Join 框架来分配任务,框架会根据 CPU 核心数自动调整线程池大小。 2. **任务分割合并**:对于小规模数据集,分割和合并任务的开销可能大于直接串行处理。 3. **任务性质**:如果任务本身是非 CPU 密集型(如 I/O 操作),`parallelStream` 的优势可能不明显。 --- ### CountDownLatch parallelStream效率对比 | 特性 | CountDownLatch | parallelStream | |-------------------------|--------------------------------------------|----------------------------------------| | **适用场景** | 多线程协作 | 集合数据的并行处理 | | **线程管理** | 显式创建线程 | 基于 Fork/Join 框架的线程池 | | **任务分割** | 手动控制 | 自动分割和合并 | | **执行效率** | 受线程切换和锁竞争影响 | 受任务分割和合并开销影响 | #### 性能测试示例 以下代码比较了两者在相同任务下的执行效率: ```java import java.util.concurrent.CountDownLatch; import java.util.stream.IntStream; public class PerformanceComparison { private static final int TASK_COUNT = 1_000_000; public static void main(String[] args) throws InterruptedException { testCountDownLatch(); testParallelStream(); } private static void testCountDownLatch() throws InterruptedException { long startTime = System.currentTimeMillis(); CountDownLatch latch = new CountDownLatch(TASK_COUNT); for (int i = 0; i < TASK_COUNT; i++) { new Thread(() -> { Math.sqrt(Math.random()); latch.countDown(); }).start(); } latch.await(); long endTime = System.currentTimeMillis(); System.out.println("CountDownLatch execution time: " + (endTime - startTime) + " ms"); } private static void testParallelStream() { long startTime = System.currentTimeMillis(); IntStream.rangeClosed(1, TASK_COUNT).parallel().forEach(i -> { Math.sqrt(Math.random()); }); long endTime = System.currentTimeMillis(); System.out.println("ParallelStream execution time: " + (endTime - startTime) + " ms"); } } ``` #### 结果分析 1. 如果任务简单且数量庞大,`parallelStream` 通常更快,因为它避免了显式线程管理的开销。 2. 如果任务复杂且需要手动控制线程协作,`CountDownLatch` 更灵活。 --- ### 总结 - `CountDownLatch` 更适合多线程协作场景。 - `parallelStream` 更适合集合数据的并行处理。 - 具体选择取决于任务的性质、数据规模以及是否需要手动控制线程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值