1. 树概念及结构
1.1 树的概念
树是一种非线性的数据结构,它是由n(n>=0)个有限节点组成一个具有层次关系的集合,每个节点可以有零个或多个子节点,最多只能有一个父节点。树的顶部节点称为根节点,没有子节点的节点称为叶节点。
树结构常用于表示层级关系,如组织结构、文件系统、网页结构等。树结构还具有高效的检索和插入操作,因此在计算机科学中被广泛应用,如在数据库索引、编译器中的语法树、图形学中的场景图等领域。常见的树结构包括二叉树、平衡树、红黑树、B树等。


1.2 树的相关概念
●节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
●叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
●非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
●双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点。如上图:A是B的父节点孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; B是A的孩子节点
●兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
●树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
●节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
●树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
●堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
●节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
●子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
●森林:由m(m>0)棵互不相交的树的集合称为森林;
1.3 树的表示
typedef int DataType;
struct Node
{
struct Node* _firstChild1; // 第一个孩子结点
struct Node* _pNextBrother; // 指向其下一个兄弟结点
DataType _data; // 结点中的数据域
};
1.4 树在实际中的运用
●表示文件系统的目录树结构
2. 二叉树概念及结构
2.1 二叉树的概念
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:
2.3 特殊的二叉树
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从 1至n的结点一一对应时称之为完全二叉树。
●要注意的是满二叉树是一种特殊的完全二叉树。
2.4 二叉树的性质
1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i - 1) 个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h - 1 .
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2,则有 n0= n2+1.
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度, .
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对
于序号为i的结点有:
1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
2.5 二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
2.5.1 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
2.5.2 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链.
typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode
{
struct BinTreeNode* _pParent; // 指向当前节点的双亲
struct BinTreeNode* _pLeft; // 指向当前节点左孩子
struct BinTreeNode* _pRight; // 指向当前节点右孩子
BTDataType _data; // 当前节点值域
};
3.二叉树的顺序结构及实现
3.1 二叉树的顺序结构
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
3.2 堆的概念及结构
如果有一个关键码的集合K = {k0 , k1,k2 ,…,k(n-1) },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:ki <=k(2*i+1) 且 ki<= k (2*i+2) ( ki>= k(2*i+1)且 ki>=k(2*i+2 ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
● 堆中某个节点的值总是不大于或不小于其父节点的值;
●堆总是一棵完全二叉树。
3.3 堆的实现
3.2.1 堆向下调整算法
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int array[] = {27,15,19,18,28,34,65,49,25,37};
3.2.2 堆的创建
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。
int a[] = {1,5,3,8,7,6};
3.2.3 建堆时间复杂度
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
3.2.4 堆的插入
先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。
3.2.5 堆的删除
删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
3.2.6 堆的代码实现
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>
typedef int HeapDataType;
typedef struct Heap
{
HeapDataType* a;
int size;
int capacity;
}HP;
void HeapInit(HP* php);
void HeapDestroy(HP* php);
HeapDataType HeadTop(HP* php);
bool HeapEmpty(HP* php);
int HeapSize(HP* php);
void HeapPush(HP* php, HeapDataType x);
void HeapPop(HP* php);
3.2.7 接口的实现
#include"heap.h"
void HeapInit(HP* php)
{
assert(php);
php->a = NULL;
php->size = php->capacity = 0;
}
void HeapDestroy(HP* php)
{
assert(php);
free(php->a);
php->a = NULL;
php->size = php->capacity = 0;
}
HeapDataType HeadTop(HP* php)
{
assert(php);
assert(php->size>0);
return php->a[0];
}
bool HeapEmpty(HP* php)
{
assert(php);
return php->size == 0;
}
int HeapSize(HP* php)
{
assert(php);
return php->size;
}
void swap(HeapDataType* x, HeapDataType* y)
{
HeapDataType temp = *x;
*x = *y;
*y = temp;
}
void AdjustUP(HeapDataType* a, HeapDataType child)
{
int parent = (child - 1) / 2;
while (child > 0)
{
if (/*a[child] < a[parent]*/a[child] > a[parent])
{
swap(&a[child], &a[parent]);
child = parent;
parent = (parent - 1) / 2;
}
else
{
break;
}
}
}
void AdjustDown(HeapDataType* a, int size,int parent)
{
int child = parent * 2 + 1;
while (child<size)
{
if (child + 1 < size && /*a[child+1] < a[child]*/a[child + 1] > a[child])
{
child = child + 1;
}
if (/*a[child] < a[parent]*/a[child] > a[parent])
{
swap(&a[child], &a[parent]);
parent = child;
child = parent * 2 + 1;
}
else
{
break;
}
}
}
void HeapPush(HP* php, HeapDataType x)
{
assert(php);
if (php->size == php->capacity)
{
int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
HeapDataType* temp = realloc(php->a, sizeof(HeapDataType) * newcapacity);
if (temp == NULL)
{
perror("realloc fail");
return;
}
php->a = temp;
php->capacity = newcapacity;
}
php->a[php->size] = x;
php->size++;
AdjustUP(php->a, php->size - 1);
}
void HeapPop(HP* php)
{
assert(php);
assert(php->size > 0);
swap(&php->a[0], &php->a[php->size-1]);
php->size--;
AdjustDown(php->a, php->size, 0);
}
3.4 堆的应用
3.4.1 堆排序
堆排序即利用堆的思想来进行排序,总共分为两个步骤:
1. 建堆
●升序:建大堆
●降序:建小堆
2. 利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
3.4.1.1 堆排序的实现
(升序)
// 交换两个整数的值
void Swap(int* x, int* y)
{
int tmp = *x;
*x = *y;
*y = tmp;
}
// 下沉调整函数,用于维护堆的性质
void AdjustDwon(int* a, int size, int parent)
{
int child = parent * 2 + 1; // 左孩子节点
while (child < size)
{
if ((child+1<size) &&( a[child] < a[child + 1])) // 如果右孩子节点存在且大于左孩子节点
{
child++; // 切换到右孩子节点
}
if (a[child] > a[parent]) // 如果孩子节点的值大于父节点的值
{
Swap(&a[parent], &a[child]); // 交换父节点和孩子节点的值
parent = child; // 更新父节点为当前孩子节点
child = child * 2 + 1; // 更新孩子节点为新的左孩子节点
}
else
{
break; // 如果父节点大于孩子节点,则不需要继续调整
}
}
}
// 堆排序函数
void HeapSort(int* a, int n)
{
// 构建大顶堆
for (int i = (n - 1 - 1) / 2; i >= 0; i--) // 从最后一个非叶子节点开始向前遍历
{
AdjustDwon(a, n, i); // 对每个非叶子节点进行下沉调整
}
// 排序
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]); // 将堆顶元素(最大值)与末尾元素交换
AdjustDwon(a, end, 0); // 对剩下的元素进行下沉调整
--end; // 缩小堆的范围
}
}
3.4.2 TOP-K问题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
●前k个最大的元素,则建小堆
●前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
3.4.2.1 TOP-K的实现
// 生成数据文件
void CreateDate()
{
const char* fileName = "data.txt";
FILE* file = fopen(fileName, "w"); // 打开文件以便写入
if (file == NULL)
{
perror("fopen error"); // 输出错误信息
return;
}
int n = 100000; // 数据数量
srand((unsigned int)time(0)); // 用当前时间初始化随机数种子
for (int i = 0; i < n; i++)
{
int x = (rand() + i) % 100000; // 生成随机数
fprintf(file, "%d\n", x); // 将随机数写入文件
}
fclose(file); // 关闭文件
}
// 交换两个整数的值
void Swap(int* x, int* y)
{
int tmp = *x;
*x = *y;
*y = tmp;
}
// 上浮调整函数
void AdjustUp(int* a, int child)
{
int parent = (child - 1) / 2; // 计算父节点下标
while (child > 0)
{
if (a[child] < a[parent]) // 如果孩子节点的值小于父节点的值
{
Swap(&a[child], &a[parent]); // 交换父节点和孩子节点的值
child = parent; // 更新孩子节点为当前父节点
parent = (parent - 1) / 2; // 更新父节点为新的父节点
}
else
{
break; // 如果父节点小于等于孩子节点,则不需要继续调整
}
}
}
// 下沉调整函数
void AdjustDown(int* a, int size, int parent)
{
int child = parent * 2 + 1; // 左孩子节点
while (child < size)
{
if (child + 1 < size && a[child] > a[child + 1]) // 如果右孩子节点存在且小于左孩子节点
{
child++; // 切换到右孩子节点
}
if (a[parent] > a[child]) // 如果父节点的值大于孩子节点的值
{
Swap(&a[parent], &a[child]); // 交换父节点和孩子节点的值
parent = child; // 更新父节点为当前孩子节点
child = child * 2 + 1; // 更新孩子节点为新的左孩子节点
}
else
{
break; // 如果父节点小于等于孩子节点,则不需要继续调整
}
}
}
// 从文件中获取Top K数据
void TopK(const char* file, int k)
{
FILE* fout = fopen(file, "r"); // 打开文件以便读取
if (fout == NULL)
{
perror("fopen open"); // 输出错误信息
return;
}
int* miniheap = (int*)malloc(sizeof(int) * k); // 分配内存用于存储Top K数据
if (miniheap == NULL)
{
perror("malloc error"); // 输出错误信息
return;
}
for (int i = 0; i < k; i++)
{
fscanf(fout, "%d", &miniheap[i]); // 从文件中读取数据到Top K堆中
AdjustUp(miniheap, i); // 对新加入的数据进行上浮调整
}
for (int i = 0; i < k; i++)
{
printf("%d ", miniheap[i]); // 输出Top K堆中的数据
}
printf("\n");
int x = 0;
while (fscanf(fout, "%d", &x) != EOF) // 从文件中读取数据直到文件结束
{
if (x > miniheap[0]) // 如果新读取的数据大于Top K堆中的最小值
{
miniheap[0] = x; // 更新Top K堆中的最小值
AdjustDown(miniheap, k, 0); // 对Top K堆进行下沉调整
}
}
for (int i = 0; i < k; i++)
{
printf("%d ", miniheap[i]); // 输出Top K堆中的数据
}
}
// 主函数
int main()
{
CreateDate(); // 生成数据文件
TopK("data.txt", 10); // 获取数据文件中的Top 10数据
return 0;
}
4. 二叉树链式结构的实现
4.1 前置说明
在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。。
int main()
{
char arr[] = "ABD##E#H##CF##G###";
int i = 0;
BTNode* Tree = BinaryTreeCreate(arr, strlen(arr), &i);
/*printf("%d\n",ret);*/
printf("PrevOrder:");
BinaryTreePrevOrder(Tree);
printf("\n");
printf("InOrder:");
BinaryTreeInOrder(Tree);
printf("\n");
printf("PostOrder:");
BinaryTreePostOrder(Tree);
printf("\n");
printf("LevelOrder:");
BinaryTreeLevelOrder(Tree);
printf("\n");
printf("TreeSize:%d", BinaryTreeSize(Tree));
printf("\n");
printf("TreeLeafSize:%d", BinaryTreeLeafSize(Tree));
printf("\n");
printf("TreeLevelK:%d", BinaryTreeLevelKSize(Tree,3));
printf("\n");
BTNode* findnode = BinaryTreeFind(Tree, 'H');
printf("Tree: ");
if (BinaryTreeComplete(Tree))
{
printf("BinaryTree is Completed\n");
}
else
{
printf("BinaryTree is not Completed\n");
}
printf("\n");
char arr2[] = "ABDH###E##CF##G##";
int j = 0;
BTNode* Tree2 = BinaryTreeCreate(arr2, strlen(arr2), &j);
printf("LevelOrder(Tree2):");
BinaryTreeLevelOrder(Tree);
printf("\n");
printf("Tree2: ");
if (BinaryTreeComplete(Tree2))
{
printf("BinaryTree is Completed\n");
}
else
{
printf("BinaryTree is not Completed\n");
}
printf("\n");
BinaryTreeDestory(&Tree);
return 0;
}
在看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的。
注意:上述代码并不是创建二叉树的方式,从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
4.2 二叉树的遍历
4.2.1 前、中、后序遍历
学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
4.2.2 遍历接口的实现
先来看前序递归展开图(中序、后序同理):
前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 2 5 6 4 1
接口:
// 二叉树前序遍历
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
接口实现:
// 前序遍历二叉树
void BinaryTreePrevOrder(BTNode* root)
{
if (root == NULL) // 如果节点为空,直接返回
{
return;
}
printf("%c ", root->_data); // 先访问根节点
BinaryTreePrevOrder(root->_left); // 再遍历左子树
BinaryTreePrevOrder(root->_right); // 最后遍历右子树
}
// 中序遍历二叉树
void BinaryTreeInOrder(BTNode* root)
{
if (root == NULL) // 如果节点为空,直接返回
{
return;
}
BinaryTreeInOrder(root->_left); // 先遍历左子树
printf("%c ", root->_data); // 再访问根节点
BinaryTreeInOrder(root->_right); // 最后遍历右子树
}
// 后序遍历二叉树
void BinaryTreePostOrder(BTNode* root)
{
if (root == NULL) // 如果节点为空,直接返回
{
return;
}
BinaryTreePostOrder(root->_left); // 先遍历左子树
BinaryTreePostOrder(root->_right); // 再遍历右子树
printf("%c ", root->_data); // 最后访问根节点
}
4.2.3 层序遍历
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。
设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
接口:
// 层序遍历
void LevelOrder(BTNode* root);
接口实现:
这里利用到了队列
// 层序遍历二叉树
void BinaryTreeLevelOrder(BTNode* root)
{
printf("\n"); // 换行
Queue q; // 创建队列
QueueInit(&q); // 初始化队列
if (root != NULL) // 如果根节点不为空
QueuePush(&q, root); // 将根节点入队
int LeveSize = 1; // 记录当前层的节点个数
while (!QueueEmpty(&q)) // 当队列不为空时
{
while (LeveSize--) // 当前层的节点个数不为0时
{
BTNode* front = QueueFront(&q); // 取出队首元素
printf("%c ", front->_data); // 输出当前节点的值
if (front->_left != NULL) // 如果左孩子不为空
{
QueuePush(&q, front->_left); // 将左孩子入队
}
if (front->_right != NULL) // 如果右孩子不为空
{
QueuePush(&q, front->_right); // 将右孩子入队
}
QueuePop(&q); // 将队首元素出队
}
printf("\n"); // 当前层遍历结束,换行
LeveSize = QueueSize(&q); // 更新下一层的节点个数
}
QueueDestroy(&q); // 销毁队列
}
4.3 节点个数以及高度等
接口:
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// // 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
接口的实现:
// 计算二叉树的节点个数
int BinaryTreeSize(BTNode* root)
{
// 如果节点为空,返回0;否则返回左子树节点个数加上右子树节点个数再加上1(根节点)
return root == NULL ? 0 : BinaryTreeSize(root->_left) + BinaryTreeSize(root->_right) + 1;
}
// 计算二叉树的叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
// 如果节点为空,返回0;如果节点的左右孩子都为空,返回1;否则返回左子树叶子节点个数加上右子树叶子节点个数
if (root == NULL)
return 0;
if ((root->_left == NULL) && (root->_right == NULL))
return 1;
return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}
// 计算二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
assert(k > 0); // 断言k大于0
if (root == NULL) // 如果节点为空,返回0
return 0;
if (k == 1) // 如果k为1,说明当前节点就是第k层的节点,返回1
{
return 1;
}
// 返回左子树第k-1层节点个数加上右子树第k-1层节点个数
return BinaryTreeLevelKSize(root->_left, k - 1) + BinaryTreeLevelKSize(root->_right, k - 1);
}
// 在二叉树中查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x) {
if (root == NULL || root->_data == x) {
return root; // 如果节点为空或者节点值等于x,返回当前节点
}
BTNode* left = BinaryTreeFind(root->_left, x); // 在左子树中查找值为x的节点
if (left != NULL)
return left;
BTNode* right = BinaryTreeFind(root->_right, x); // 在右子树中查找值为x的节点
if (right != NULL)
return right;
return NULL; // 如果左右子树都没有找到值为x的节点,返回NULL
}
4.5 二叉树的创建和销毁
接口:
// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* p);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);
接口的实现:
// 根据先序遍历序列创建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* p)
{
// 如果数组为空,节点个数小于等于0,或者*p大于等于n,返回NULL
if (a == NULL || n <= 0 || *p >= n)
return NULL;
// 如果当前数组元素为'#',表示空节点,将*p加1后返回NULL
if (a[*p] == '#')
{
(*p)++;
return NULL;
}
// 创建根节点
BTNode* root = (BTNode*)malloc(sizeof(BTNode));
root->_data = a[*p]; // 根节点的值为当前数组元素值
(*p)++; // *p指向下一个数组元素
// 递归创建左子树和右子树
root->_left = BinaryTreeCreate(a, n, p);
root->_right = BinaryTreeCreate(a, n, p);
return root; // 返回根节点
}
// 销毁二叉树
void BinaryTreeDestory(BTNode** root)
{
if (*root == NULL) // 如果根节点为空,直接返回
{
return;
}
BinaryTreeDestory(&((*root)->_left)); // 递归销毁左子树
BinaryTreeDestory(&((*root)->_right)); // 递归销毁右子树
free(*root); // 释放当前节点内存
*root = NULL; // 将根节点指针置为NULL
}
关于二叉树的的知识就先到此为止,对于二叉树的学习大家必须要对递归有个深入的理解,多画递归展开图会对大家的学习有很大的帮助。
喜欢博主博客的可以 点赞+关注 我们下期见~~~