同余定理总结方法

同余定理是数论中的重要概念。给定一个正整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作::a≡b(mod m)::
两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对模m同余或a同余于b模m。记作::a≡b(mod m)::

同余性质:
反身性:a≡a (mod m)
对称性: 若a≡b(mod m),则b≡a(mod m)
传递性: 若a≡b(mod m),b≡c(mod m),则a≡c(mod m)
同余式相加:若a≡b(mod m),b≡c(mod m),则a ± c≡b ± d(mod m)
同余式相乘:若a≡b(mod m),b≡c(mod m),则ac≡bd(mod m)
线性运算:如果a≡b(mod m),c≡d(mod m),那么a ± c≡b ± d(mod m),且a * c≡b * d(mod m)
除法:若ac ≡ bc (mod m) c≠0 则 a≡ b (mod m/gcd(c,m)) 其中gcd(c,m)表示c,m的最大公约数。特殊地 ,gcd(c,m)=1 则a ≡ b (mod m)
幂运算:如果a ≡ b (mod m),那么a^n ≡ b^n (mod m)
若a ≡ b (mod m),n|m,则 a ≡ b (mod n)
若a ≡ b (mod mi) (i=1,2…n) 则 a ≡ b (mod [m1,m2,…mn]) 其中[m1,m2,…mn]表示m1,m2,…mn的最小公倍数

1.对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。
2.对于同一个除数,两个数的乘积与它们余数的乘积同余。
3.对于同一个除数,如果有两个整数同余,那么它们的差就一 定能被这个除数整除。
4.对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。

Application:

  • 例题:求2001^2003除以13的余数
  • 根据同余性质❹,我们可以得出20012003≡122003(mod 13)
  • 122003还是一个较大的数,很难求出它除以13的余数,这时,我们就要找出12的几次方与1对于模13是同余的。根据试验,可得出122≡1(mod 13)
  • 我们把12^2003拆成 (122)×1001×121,而(122)×1001×121≡1×12≡12(mod 13)
  • 这时,我们可以得出*2001^2003除以13的余数为12,*我们用计算器计算一下,这个答案是对的。
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值