@Leetcode罗马数字转整数
罗马数字在生活中的使用一直是十分广泛的(虽然用在标题比较多),但其编排方法之独特,始终耐人寻味。今天让我们探寻一下罗马数字编程实现的奥秘,先看题干:
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做 XXVII, 即为 XX + V + II 。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况:
I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。
X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。
C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。
示例1:
输入: “III”
输出: 3
示例2:
输入: “IV”
输出: 4
示例3:
输入: “IX”
输出: 9
示例4:
输入: “LVIII”
输出: 58
解释: L = 50, V= 5, III = 3.
示例5:
输入: “MCMXCIV”
输出: 1994
解释: M = 1000, CM = 900, XC = 90, IV = 4.
这道题的思路很明确,也很巧妙。
我们需要判断这是否是一个可以使用特殊规则的数,而这些特殊规则的数都有一个共同的特点,这个数的某一位的下一位要大于或等于本位这时会执行这种减操作,而执行减操作的数都是减去在前一位的这个小一点的数。
举个例子,IV是4,所以计算过程是0-1+5,是符合这种特殊规则的。
由此我们可以得到本题的基本思路,对于每个位置都判断是否需要执行特殊的减规则,需要就减去本身,不需要就直接加上即可。我们可以创建一个存放罗马数字所代表的值的数组,用来存放每个罗马数字所代表的不同的值,这样在进行检测时只要调用这个数组里的值就可以完成数字的相加。
class Solution {
public:
int romanToInt(string s) {
int alp[200];
alp['I']=1;
alp['V']=5;
alp['X']=10;
alp['L']=50;
alp['C']=100;
alp['D']=500;
alp['M']=1000;
int sum_ans=0;
for(int i=0;i<s.length();i++)
{
if(alp[s[i+1]]>alp[s[i]]&&i+1<=s.length())
sum_ans-=alp[s[i]];
else if(i+1<=s.length())
sum_ans+=alp[s[i]];
}
return sum_ans;
}
};
本题的编写中需要注意如何将字符串中的罗马数字改变成值,当然也可以使用其他方法避免这一个问题,比如说双指针,比如说map等,但方向上都是相同的,都是判断其与下一个罗马数字的关系。
注意题中给了string s的条件,不要在求字符串长度时写成strlen()哦。